pratham0011 commited on
Commit
0f0b4f7
β€’
1 Parent(s): 6274649

Update streamlit_app.py

Browse files
Files changed (1) hide show
  1. streamlit_app.py +0 -115
streamlit_app.py CHANGED
@@ -1,118 +1,3 @@
1
- # import streamlit as st
2
- # import requests
3
- # import json
4
- # import pandas as pd
5
-
6
- # st.set_page_config(page_title="QueryMate: Text to SQL & CSV")
7
-
8
- # st.markdown("# QueryMate: Text to SQL & CSV πŸ’¬πŸ—„οΈ")
9
- # st.markdown('''Welcome to QueryMate, your friendly assistant for converting natural language queries into SQL statements and CSV outputs!
10
- # Let's get started with your data queries!''')
11
-
12
- # # Load chat history
13
- # def load_chat_history():
14
- # try:
15
- # with open('chat_history.json', 'r') as f:
16
- # return json.load(f)
17
- # except FileNotFoundError:
18
- # return []
19
-
20
- # def save_chat_history(history):
21
- # with open('chat_history.json', 'w') as f:
22
- # json.dump(history, f)
23
-
24
- # chat_history = load_chat_history()
25
-
26
- # # Data source selection
27
- # data_source = st.radio("Select Data Source:", ('SQL Database', 'Employee CSV'))
28
-
29
- # # Predefined queries
30
- # predefined_queries = {
31
- # 'SQL Database': [
32
- # 'Print all students',
33
- # 'Count total number of students',
34
- # 'List students in Data Science class'
35
- # ],
36
- # 'Employee CSV': [
37
- # 'Print employees having the department id equal to 100',
38
- # 'Count total number of employees',
39
- # 'List Top 5 employees according to salary in descending order'
40
- # ]
41
- # }
42
-
43
- # st.markdown(f"### Predefined Queries for {data_source}")
44
-
45
- # # Create buttons for predefined queries
46
- # for query in predefined_queries[data_source]:
47
- # if st.button(query):
48
- # st.session_state.predefined_query = query
49
-
50
- # st.markdown("### Enter Your Question")
51
- # question = st.text_input("Input: ", key="input", value=st.session_state.get('predefined_query', ''))
52
-
53
- # # Submit button
54
- # submit = st.button("Submit")
55
-
56
- # if submit:
57
- # # Send request to FastAPI backend
58
- # response = requests.post("http://localhost:8000/query",
59
- # json={"question": question, "data_source": data_source})
60
- # if response.status_code == 200:
61
- # data = response.json()
62
- # st.markdown(f"## Generated {'SQL' if data_source == 'SQL Database' else 'Pandas'} Query")
63
- # st.code(data['query'])
64
-
65
- # st.markdown("## Query Results")
66
- # result = data['result']
67
-
68
- # if isinstance(result, list) and len(result) > 0:
69
- # if isinstance(result[0], dict):
70
- # # For CSV queries that return a list of dictionaries
71
- # df = pd.DataFrame(result)
72
- # st.dataframe(df)
73
- # elif isinstance(result[0], list):
74
- # # For SQL queries that return a list of lists
75
- # df = pd.DataFrame(result)
76
- # st.dataframe(df)
77
- # else:
78
- # # For single column results
79
- # st.dataframe(pd.DataFrame(result, columns=['Result']))
80
- # elif isinstance(result, dict):
81
- # # For single row results
82
- # st.table(result)
83
- # else:
84
- # # For scalar results or empty results
85
- # st.write(result)
86
-
87
- # if data_source == 'Employee CSV':
88
- # st.markdown("## Available CSV Columns")
89
- # st.write(data['columns'])
90
-
91
- # # Update chat history
92
- # chat_history.append(f"πŸ‘¨β€πŸ’»({data_source}): {question}")
93
- # chat_history.append(f"πŸ€–: {data['query']}")
94
- # save_chat_history(chat_history)
95
- # else:
96
- # st.error(f"Error processing your request: {response.text}")
97
-
98
- # # Clear the predefined query from session state
99
- # st.session_state.pop('predefined_query', None)
100
-
101
- # # Display chat history
102
- # st.markdown("## Chat History")
103
- # for message in chat_history:
104
- # st.text(message)
105
-
106
- # # Option to clear chat history
107
- # if st.button("Clear Chat History"):
108
- # chat_history.clear()
109
- # save_chat_history(chat_history)
110
- # st.success("Chat history cleared!")
111
-
112
-
113
-
114
-
115
-
116
  import streamlit as st
117
  import requests
118
  import pandas as pd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
  import requests
3
  import pandas as pd