Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,56 +1,79 @@
|
|
1 |
-
from transformers import AutoProcessor
|
|
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
from PIL import Image
|
5 |
-
from byaldi import RAGMultiModalModel
|
6 |
-
from qwen_vl_utils import process_vision_info
|
7 |
-
import os
|
8 |
-
import tempfile
|
9 |
|
10 |
-
# Load ColPali model
|
11 |
-
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali")
|
12 |
|
13 |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
|
14 |
|
|
|
|
|
15 |
def load_model():
|
16 |
-
return
|
|
|
|
|
|
|
|
|
17 |
|
|
|
18 |
vlm = load_model()
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
else:
|
43 |
-
return output_text
|
44 |
-
|
45 |
-
|
46 |
-
os.unlink(temp_file_path)
|
47 |
|
|
|
48 |
def process_image(image, keyword=""):
|
49 |
max_size = 1024
|
50 |
if max(image.size) > max_size:
|
51 |
image.thumbnail((max_size, max_size))
|
52 |
return ocr_image(image, keyword=keyword)
|
53 |
|
|
|
54 |
interface = gr.Interface(
|
55 |
fn=process_image,
|
56 |
inputs=[
|
@@ -61,4 +84,5 @@ interface = gr.Interface(
|
|
61 |
title="Hindi & English OCR with Keyword Search",
|
62 |
)
|
63 |
|
|
|
64 |
interface.launch()
|
|
|
1 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
2 |
+
from qwen_vl_utils import process_vision_info
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
from PIL import Image
|
|
|
|
|
|
|
|
|
6 |
|
|
|
|
|
7 |
|
8 |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
|
9 |
|
10 |
+
# Initialize the model with float16 precision and handle fallback to CPU
|
11 |
+
# Simplified model loading function for CPU
|
12 |
def load_model():
|
13 |
+
return Qwen2VLForConditionalGeneration.from_pretrained(
|
14 |
+
"Qwen/Qwen2-VL-2B-Instruct",
|
15 |
+
torch_dtype=torch.float32, # Use float32 for CPU
|
16 |
+
low_cpu_mem_usage=True
|
17 |
+
)
|
18 |
|
19 |
+
# Load the model
|
20 |
vlm = load_model()
|
21 |
|
22 |
+
# OCR function to extract text from an image
|
23 |
+
def ocr_image(image, query="Extract text from the image", keyword=""):
|
24 |
+
messages = [
|
25 |
+
{
|
26 |
+
"role": "user",
|
27 |
+
"content": [
|
28 |
+
{
|
29 |
+
"type": "image",
|
30 |
+
"image": image,
|
31 |
+
},
|
32 |
+
{"type": "text", "text": query},
|
33 |
+
],
|
34 |
+
}
|
35 |
+
]
|
36 |
|
37 |
+
# Prepare inputs for the model
|
38 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
39 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
40 |
+
inputs = processor(
|
41 |
+
text=[text],
|
42 |
+
images=image_inputs,
|
43 |
+
videos=video_inputs,
|
44 |
+
padding=True,
|
45 |
+
return_tensors="pt",
|
46 |
+
)
|
47 |
+
inputs = inputs.to("cpu")
|
48 |
|
49 |
+
# Generate the output text using the model
|
50 |
+
generated_ids = vlm.generate(**inputs, max_new_tokens=512)
|
51 |
+
generated_ids_trimmed = [
|
52 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
53 |
+
]
|
54 |
+
|
55 |
+
output_text = processor.batch_decode(
|
56 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
57 |
+
)[0]
|
58 |
+
|
59 |
+
if keyword:
|
60 |
+
keyword_lower = keyword.lower()
|
61 |
+
if keyword_lower in output_text.lower():
|
62 |
+
highlighted_text = output_text.replace(keyword, f"**{keyword}**")
|
63 |
+
return f"Keyword '{keyword}' found in the text:\n\n{highlighted_text}"
|
64 |
else:
|
65 |
+
return f"Keyword '{keyword}' not found in the text:\n\n{output_text}"
|
66 |
+
else:
|
67 |
+
return output_text
|
|
|
68 |
|
69 |
+
# Gradio interface
|
70 |
def process_image(image, keyword=""):
|
71 |
max_size = 1024
|
72 |
if max(image.size) > max_size:
|
73 |
image.thumbnail((max_size, max_size))
|
74 |
return ocr_image(image, keyword=keyword)
|
75 |
|
76 |
+
# Update the Gradio interface:
|
77 |
interface = gr.Interface(
|
78 |
fn=process_image,
|
79 |
inputs=[
|
|
|
84 |
title="Hindi & English OCR with Keyword Search",
|
85 |
)
|
86 |
|
87 |
+
# Launch Gradio interface in Colab
|
88 |
interface.launch()
|