Spaces:
Build error
Build error
Upload The NLP_Steps.py
Browse files- pages/The NLP_Steps.py +382 -0
pages/The NLP_Steps.py
ADDED
|
@@ -0,0 +1,382 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import re
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def main_page():
|
| 7 |
+
# Title of the app
|
| 8 |
+
st.title("Important Steps in NLP Project")
|
| 9 |
+
|
| 10 |
+
# Introduction
|
| 11 |
+
st.write("""
|
| 12 |
+
In our **ZERO TO HERO IN ML** app, we have already learned about the first two steps of an NLP project:
|
| 13 |
+
1. **Problem Statement**
|
| 14 |
+
2. **Data Collection**
|
| 15 |
+
|
| 16 |
+
On this page, we will explore the next three main steps specific to an NLP project. These steps are essential for processing and understanding text data.
|
| 17 |
+
""")
|
| 18 |
+
|
| 19 |
+
# Highlight the steps
|
| 20 |
+
st.header("Three Main Steps in an NLP Project")
|
| 21 |
+
|
| 22 |
+
# Step 1: Simple EDA of Text
|
| 23 |
+
st.subheader("1. Simple EDA of Text")
|
| 24 |
+
st.write("""
|
| 25 |
+
**Exploratory Data Analysis (EDA)** helps you understand the structure and quality of the text data.
|
| 26 |
+
Some key actions in EDA for text include:
|
| 27 |
+
- Checking for missing values
|
| 28 |
+
- Examining data distribution
|
| 29 |
+
- Identifying patterns like URLs, mentions (@, #), and numeric data
|
| 30 |
+
- Understanding the case format and punctuation
|
| 31 |
+
- Spotting special characters, HTML/XML tags, and emojis
|
| 32 |
+
""")
|
| 33 |
+
if st.button("Know More About Simple EDA"):
|
| 34 |
+
st.session_state.page = "simple_eda_app"
|
| 35 |
+
|
| 36 |
+
st.markdown("---")
|
| 37 |
+
|
| 38 |
+
# Step 2: Pre-Processing of Text
|
| 39 |
+
st.subheader("2. Pre-Processing of Text")
|
| 40 |
+
st.write("""
|
| 41 |
+
**Pre-processing** prepares the raw text data for analysis by:
|
| 42 |
+
- Converting text to lowercase (Case Normalization)
|
| 43 |
+
- Removing special characters, punctuation, and numbers
|
| 44 |
+
- Eliminating stopwords (e.g., "the", "and", "in")
|
| 45 |
+
- Expanding contractions (e.g., "can't" to "cannot")
|
| 46 |
+
- Handling URLs, emails, mentions, and hashtags
|
| 47 |
+
- Using Stemming or Lemmatization to reduce words to their base forms
|
| 48 |
+
- Converting emojis into textual descriptions or removing them
|
| 49 |
+
""")
|
| 50 |
+
if st.button("Know More About Pre-Processor"):
|
| 51 |
+
st.session_state.page = "pre_processing"
|
| 52 |
+
|
| 53 |
+
st.markdown("---")
|
| 54 |
+
|
| 55 |
+
# Step 3: Feature Engineering of Text
|
| 56 |
+
st.subheader("3. Feature Engineering of Text")
|
| 57 |
+
st.write("""
|
| 58 |
+
**Feature Engineering** involves extracting meaningful features from text data, such as:
|
| 59 |
+
- **Bag of Words (BoW)**: Converting text to word counts
|
| 60 |
+
- **TF-IDF (Term Frequency-Inverse Document Frequency)**: Highlighting important terms
|
| 61 |
+
- **Word Embeddings**: Representing words in numerical vector format (e.g., Word2Vec, GloVe, FastText)
|
| 62 |
+
- **N-grams**: Generating word sequences for richer context
|
| 63 |
+
- **Custom Features**: Length of the text, sentiment scores, and more
|
| 64 |
+
""")
|
| 65 |
+
|
| 66 |
+
st.markdown("---")
|
| 67 |
+
|
| 68 |
+
# Note
|
| 69 |
+
st.markdown("""
|
| 70 |
+
**Note:** These three steps are explained in the context of NLP projects that primarily deal with **text data**.
|
| 71 |
+
- Do not confuse these steps with the general roadmap for a machine learning project, as they are tailored for NLP-specific tasks.
|
| 72 |
+
""")
|
| 73 |
+
|
| 74 |
+
# Define the main EDA function
|
| 75 |
+
def simple_eda_app():
|
| 76 |
+
# Title and Introduction
|
| 77 |
+
st.title("Simple EDA for Text Data in NLP")
|
| 78 |
+
st.write("""
|
| 79 |
+
This application demonstrates various steps involved in Simple EDA (Exploratory Data Analysis) for text data.
|
| 80 |
+
These steps help assess the quality and structure of the collected text data, which is crucial for successful preprocessing and NLP projects.
|
| 81 |
+
""")
|
| 82 |
+
|
| 83 |
+
# Sample dataset
|
| 84 |
+
data = pd.DataFrame({
|
| 85 |
+
"Review": [
|
| 86 |
+
"I ❤️ programming with Python",
|
| 87 |
+
"Contact us at support@python.org",
|
| 88 |
+
"Debugging <i>errors</i> is tedious",
|
| 89 |
+
"@John loves Python",
|
| 90 |
+
"AI has grown exponentially in 2023",
|
| 91 |
+
"Visit https://www.github.com/",
|
| 92 |
+
"Coding is fun!",
|
| 93 |
+
"Learning AI is exciting",
|
| 94 |
+
"Learn AI in 12/05/2023"
|
| 95 |
+
]
|
| 96 |
+
})
|
| 97 |
+
|
| 98 |
+
# Display dataset
|
| 99 |
+
st.write("Below is the sample dataset we will use:")
|
| 100 |
+
st.dataframe(data)
|
| 101 |
+
|
| 102 |
+
# Step selection dropdown
|
| 103 |
+
selected_option = st.selectbox(
|
| 104 |
+
"Choose a step to explore:",
|
| 105 |
+
[
|
| 106 |
+
"Introduction to Simple EDA",
|
| 107 |
+
"Check Case Format",
|
| 108 |
+
"Detect HTML/XML Tags",
|
| 109 |
+
"Detect Mentions (@, #)",
|
| 110 |
+
"Detect Numeric Data",
|
| 111 |
+
"Detect URLs",
|
| 112 |
+
"Detect Punctuation & Special Characters",
|
| 113 |
+
"Detect Emojis (Code Only)",
|
| 114 |
+
"Detect Dates and Times",
|
| 115 |
+
"Detect Emails"
|
| 116 |
+
]
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
# Perform actions based on selected option
|
| 120 |
+
if selected_option == "Introduction to Simple EDA":
|
| 121 |
+
st.header("Introduction to Simple EDA for Text Data")
|
| 122 |
+
st.write("""
|
| 123 |
+
Exploratory Data Analysis (EDA) for text data helps examine, visualize, and summarize unstructured datasets.
|
| 124 |
+
These analyses reveal patterns, outliers, and inconsistencies to ensure better preprocessing and model accuracy.
|
| 125 |
+
""")
|
| 126 |
+
|
| 127 |
+
elif selected_option == "Check Case Format":
|
| 128 |
+
st.header("Step 1: Check Case Format")
|
| 129 |
+
code = """
|
| 130 |
+
data["Case Format"] = data["Review"].apply(
|
| 131 |
+
lambda x: "Lower/Upper" if x.islower() or x.isupper() else "Mixed"
|
| 132 |
+
)
|
| 133 |
+
"""
|
| 134 |
+
st.code(code, language="python")
|
| 135 |
+
data["Case Format"] = data["Review"].apply(
|
| 136 |
+
lambda x: "Lower/Upper" if x.islower() or x.isupper() else "Mixed"
|
| 137 |
+
)
|
| 138 |
+
st.write("Identified case formats in the dataset:")
|
| 139 |
+
st.dataframe(data)
|
| 140 |
+
|
| 141 |
+
elif selected_option == "Detect HTML/XML Tags":
|
| 142 |
+
st.header("Step 2: Detect HTML/XML Tags")
|
| 143 |
+
code = """
|
| 144 |
+
data["Contains Tags"] = data["Review"].apply(lambda x: bool(re.search(r"<.*?>", x)))
|
| 145 |
+
"""
|
| 146 |
+
st.code(code, language="python")
|
| 147 |
+
data["Contains Tags"] = data["Review"].apply(lambda x: bool(re.search(r"<.*?>", x)))
|
| 148 |
+
st.write("Rows with HTML/XML tags detected:")
|
| 149 |
+
st.dataframe(data)
|
| 150 |
+
|
| 151 |
+
elif selected_option == "Detect Mentions (@, #)":
|
| 152 |
+
st.header("Step 3: Detect Mentions (@, #)")
|
| 153 |
+
code = """
|
| 154 |
+
data["Contains Mentions"] = data["Review"].apply(lambda x: bool(re.search(r"\\B[@#]\\S+", x)))
|
| 155 |
+
"""
|
| 156 |
+
st.code(code, language="python")
|
| 157 |
+
data["Contains Mentions"] = data["Review"].apply(lambda x: bool(re.search(r"\B[@#]\S+", x)))
|
| 158 |
+
st.write("Rows with mentions identified:")
|
| 159 |
+
st.dataframe(data)
|
| 160 |
+
|
| 161 |
+
elif selected_option == "Detect Numeric Data":
|
| 162 |
+
st.header("Step 4: Detect Numeric Data")
|
| 163 |
+
code = """
|
| 164 |
+
data["Contains Numeric"] = data["Review"].apply(lambda x: bool(re.search(r"\\d+", x)))
|
| 165 |
+
"""
|
| 166 |
+
st.code(code, language="python")
|
| 167 |
+
data["Contains Numeric"] = data["Review"].apply(lambda x: bool(re.search(r"\d+", x)))
|
| 168 |
+
st.write("Rows containing numeric data:")
|
| 169 |
+
st.dataframe(data)
|
| 170 |
+
|
| 171 |
+
elif selected_option == "Detect URLs":
|
| 172 |
+
st.header("Step 5: Detect URLs")
|
| 173 |
+
code = """
|
| 174 |
+
data["Contains URL"] = data["Review"].apply(lambda x: bool(re.search(r"https?://\\S+", x)))
|
| 175 |
+
"""
|
| 176 |
+
st.code(code, language="python")
|
| 177 |
+
data["Contains URL"] = data["Review"].apply(lambda x: bool(re.search(r"https?://\S+", x)))
|
| 178 |
+
st.write("Rows containing URLs:")
|
| 179 |
+
st.dataframe(data)
|
| 180 |
+
|
| 181 |
+
elif selected_option == "Detect Punctuation & Special Characters":
|
| 182 |
+
st.header("Step 6: Detect Punctuation & Special Characters")
|
| 183 |
+
code = """
|
| 184 |
+
data["Contains Punctuation"] = data["Review"].apply(
|
| 185 |
+
lambda x: bool(re.search(r'[!"#$%&\\'()*+,-./:;<=>?@[\\]^_`{|}~]', x))
|
| 186 |
+
)
|
| 187 |
+
"""
|
| 188 |
+
st.code(code, language="python")
|
| 189 |
+
data["Contains Punctuation"] = data["Review"].apply(
|
| 190 |
+
lambda x: bool(re.search(r'[!"#$%&\'()*+,-./:;<=>?@[\]^_`{|}~]', x))
|
| 191 |
+
)
|
| 192 |
+
st.write("Rows with punctuation or special characters identified:")
|
| 193 |
+
st.dataframe(data)
|
| 194 |
+
|
| 195 |
+
elif selected_option == "Detect Emojis (Code Only)":
|
| 196 |
+
st.header("Step 7: Detect Emojis (Code Only)")
|
| 197 |
+
st.write("""
|
| 198 |
+
Here is the code for detecting emojis in text data using Python:
|
| 199 |
+
""")
|
| 200 |
+
code = """
|
| 201 |
+
import emoji
|
| 202 |
+
|
| 203 |
+
data["Contains Emojis"] = data["Review"].apply(lambda x: bool(emoji.emoji_count(x)))
|
| 204 |
+
"""
|
| 205 |
+
st.code(code, language="python")
|
| 206 |
+
st.write("Emojis add meaning and emotion to text. Handle them based on your project needs.")
|
| 207 |
+
|
| 208 |
+
elif selected_option == "Detect Dates and Times":
|
| 209 |
+
st.header("Step 8: Detect Dates and Times")
|
| 210 |
+
code = """
|
| 211 |
+
data["Contains Date/Time"] = data["Review"].apply(
|
| 212 |
+
lambda x: bool(re.search(r"\\d{1,2}/\\d{1,2}/\\d{4}|\\d{4}/\\d{1,2}/\\d{1,2}", x))
|
| 213 |
+
)
|
| 214 |
+
"""
|
| 215 |
+
st.code(code, language="python")
|
| 216 |
+
data["Contains Date/Time"] = data["Review"].apply(
|
| 217 |
+
lambda x: bool(re.search(r"\d{1,2}/\d{1,2}/\d{4}|\d{4}/\d{1,2}/\d{1,2}", x))
|
| 218 |
+
)
|
| 219 |
+
st.write("Rows with date and time information detected:")
|
| 220 |
+
st.dataframe(data)
|
| 221 |
+
|
| 222 |
+
elif selected_option == "Detect Emails":
|
| 223 |
+
st.header("Step 9: Detect Emails")
|
| 224 |
+
code = """
|
| 225 |
+
data["Contains Email"] = data["Review"].apply(lambda x: bool(re.search(r"\\S+@\\S+", x)))
|
| 226 |
+
"""
|
| 227 |
+
st.code(code, language="python")
|
| 228 |
+
data["Contains Email"] = data["Review"].apply(lambda x: bool(re.search(r"\S+@\S+", x)))
|
| 229 |
+
st.write("Rows containing emails:")
|
| 230 |
+
st.dataframe(data)
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
def preprocessing():
|
| 234 |
+
|
| 235 |
+
# Set up the Streamlit layout
|
| 236 |
+
st.title("Text Preprocessing in NLP")
|
| 237 |
+
st.write("""
|
| 238 |
+
Preprocessing in Natural Language Processing (NLP) transforms raw, unstructured text data
|
| 239 |
+
into a clean format suitable for modeling. The following steps help standardize the data,
|
| 240 |
+
remove unwanted elements, and extract meaningful information.
|
| 241 |
+
""")
|
| 242 |
+
|
| 243 |
+
# Example Data
|
| 244 |
+
data = pd.DataFrame({
|
| 245 |
+
"Review": [
|
| 246 |
+
"I love Hyderabad Biryani!",
|
| 247 |
+
"I hate other places Biryani.",
|
| 248 |
+
"I like the Cooking process! 😊",
|
| 249 |
+
"Follow us on #Instagram @foodies. http://example.com"
|
| 250 |
+
]
|
| 251 |
+
})
|
| 252 |
+
|
| 253 |
+
st.subheader("Original Data:")
|
| 254 |
+
st.dataframe(data)
|
| 255 |
+
|
| 256 |
+
# Step-1: Case Normalization
|
| 257 |
+
st.subheader("Step 1: Case Normalization")
|
| 258 |
+
st.write("Convert all text to lowercase to ensure consistency.")
|
| 259 |
+
st.code("""
|
| 260 |
+
data['Review'] = data['Review'].str.lower()
|
| 261 |
+
""")
|
| 262 |
+
data["Review"] = data["Review"].str.lower()
|
| 263 |
+
st.write("Updated Data (Lowercase Text):")
|
| 264 |
+
st.dataframe(data)
|
| 265 |
+
|
| 266 |
+
st.markdown("---")
|
| 267 |
+
|
| 268 |
+
# Step-2: Removing Noise (HTML Tags, URLs, Emails, Mentions/Hashtags)
|
| 269 |
+
st.subheader("Step 2: Removing Noise")
|
| 270 |
+
st.write("Remove unwanted special characters, HTML/XML tags, URLs, email addresses, mentions, and hashtags.")
|
| 271 |
+
st.code("""
|
| 272 |
+
# Removing HTML tags
|
| 273 |
+
data['Review'] = data['Review'].apply(lambda x: re.sub('<.*?>', ' ', x))
|
| 274 |
+
|
| 275 |
+
# Removing URLs
|
| 276 |
+
data['Review'] = data['Review'].apply(lambda x: re.sub('https?://\S+', ' ', x))
|
| 277 |
+
|
| 278 |
+
# Removing Emails
|
| 279 |
+
data['Review'] = data['Review'].apply(lambda x: re.sub(r'\S+@\S+', ' ', x))
|
| 280 |
+
|
| 281 |
+
# Removing Mentions and Hashtags
|
| 282 |
+
data['Review'] = data['Review'].apply(lambda x: re.sub(r'\B[@#]\S+', ' ', x))
|
| 283 |
+
""")
|
| 284 |
+
data["Review"] = data["Review"].apply(lambda x: re.sub('<.*?>', ' ', x))
|
| 285 |
+
data["Review"] = data["Review"].apply(lambda x: re.sub('https?://\S+', ' ', x))
|
| 286 |
+
data["Review"] = data["Review"].apply(lambda x: re.sub(r'\S+@\S+', ' ', x))
|
| 287 |
+
data["Review"] = data["Review"].apply(lambda x: re.sub(r'\B[@#]\S+', ' ', x))
|
| 288 |
+
st.write("Updated Data (After Noise Removal):")
|
| 289 |
+
st.dataframe(data)
|
| 290 |
+
|
| 291 |
+
st.markdown("---")
|
| 292 |
+
|
| 293 |
+
# Step-3: Emoji Handling
|
| 294 |
+
st.subheader("Step 3: Emoji Handling")
|
| 295 |
+
st.write("Convert emojis to descriptive text or remove them.")
|
| 296 |
+
st.code("""
|
| 297 |
+
# Example: Replace emojis with a placeholder 'EMOJI'
|
| 298 |
+
data['Review'] = data['Review'].apply(lambda x: emoji.demojize(x, delimiters=(' ', ' ')))
|
| 299 |
+
""")
|
| 300 |
+
data["Review"] = data["Review"].apply(lambda x: re.sub(r'[^\x00-\x7F]+', 'EMOJI', x)) # Replace emojis with 'EMOJI'
|
| 301 |
+
st.write("Updated Data (After Emoji Handling):")
|
| 302 |
+
st.dataframe(data)
|
| 303 |
+
|
| 304 |
+
st.markdown("---")
|
| 305 |
+
|
| 306 |
+
# Step-4: Removing Stopwords (Excluding NLTK)
|
| 307 |
+
st.subheader("Step 4: Removing Stopwords")
|
| 308 |
+
st.write("Remove common words like 'and', 'is', which don't add value.")
|
| 309 |
+
st.code("""
|
| 310 |
+
stopwords = ["and", "the", "is", "in", "to", "for", "on"]
|
| 311 |
+
data['Review'] = data['Review'].apply(lambda x: ' '.join([word for word in x.split() if word not in stopwords]))
|
| 312 |
+
""")
|
| 313 |
+
stopwords = ["and", "the", "is", "in", "to", "for", "on"] # Example stopwords list
|
| 314 |
+
data["Review"] = data["Review"].apply(lambda x: ' '.join([word for word in x.split() if word not in stopwords]))
|
| 315 |
+
st.write("Updated Data (After Stopwords Removal):")
|
| 316 |
+
st.dataframe(data)
|
| 317 |
+
|
| 318 |
+
st.markdown("---")
|
| 319 |
+
|
| 320 |
+
# Step-5: Removing Punctuation and Digits
|
| 321 |
+
st.subheader("Step 5: Removing Punctuation and Digits")
|
| 322 |
+
st.write("Remove punctuation marks and digits if not meaningful.")
|
| 323 |
+
st.code("""
|
| 324 |
+
# Removing Punctuation
|
| 325 |
+
data['Review'] = data['Review'].apply(lambda x: re.sub(r'[^\w\s]', ' ', x))
|
| 326 |
+
|
| 327 |
+
# Removing Digits
|
| 328 |
+
data['Review'] = data['Review'].apply(lambda x: re.sub(r'\d+', '', x))
|
| 329 |
+
""")
|
| 330 |
+
data["Review"] = data["Review"].apply(lambda x: re.sub(r'[^\w\s]', ' ', x))
|
| 331 |
+
data["Review"] = data["Review"].apply(lambda x: re.sub(r'\d+', '', x))
|
| 332 |
+
st.write("Updated Data (After Removing Punctuation and Digits):")
|
| 333 |
+
st.dataframe(data)
|
| 334 |
+
|
| 335 |
+
st.markdown("---")
|
| 336 |
+
|
| 337 |
+
# Step-6: Fixing Contractions
|
| 338 |
+
st.subheader("Step 6: Fixing Contractions")
|
| 339 |
+
st.write("Expand contractions like 'can't' to 'cannot'.")
|
| 340 |
+
st.code("""
|
| 341 |
+
contractions_dict = {"can't": "cannot", "won't": "will not", "I'm": "I am", "you're": "you are"}
|
| 342 |
+
data['Review'] = data['Review'].apply(lambda x: ' '.join([contractions_dict.get(word, word) for word in x.split()]))
|
| 343 |
+
""")
|
| 344 |
+
contractions_dict = {"can't": "cannot", "won't": "will not", "I'm": "I am", "you're": "you are"} # Example contraction dictionary
|
| 345 |
+
data["Review"] = data["Review"].apply(lambda x: ' '.join([contractions_dict.get(word, word) for word in x.split()]))
|
| 346 |
+
st.write("Updated Data (After Fixing Contractions):")
|
| 347 |
+
st.dataframe(data)
|
| 348 |
+
|
| 349 |
+
st.markdown("---")
|
| 350 |
+
|
| 351 |
+
# Step-7: Handling Dates and Times
|
| 352 |
+
st.subheader("Step 7: Handling Dates and Times")
|
| 353 |
+
st.write("Standardize dates and times into a uniform format.")
|
| 354 |
+
st.code("""
|
| 355 |
+
# Example: Replacing date-like patterns with 'DATE'
|
| 356 |
+
data['Review'] = data['Review'].apply(lambda x: re.sub(r'\b\d{1,2}\/\d{1,2}\/\d{4}\b', 'DATE', x))
|
| 357 |
+
""")
|
| 358 |
+
data["Review"] = data["Review"].apply(lambda x: re.sub(r'\b\d{1,2}\/\d{1,2}\/\d{4}\b', 'DATE', x))
|
| 359 |
+
st.write("Updated Data (After Handling Dates and Times):")
|
| 360 |
+
st.dataframe(data)
|
| 361 |
+
|
| 362 |
+
st.markdown("---")
|
| 363 |
+
|
| 364 |
+
# Display final clean data
|
| 365 |
+
st.subheader("Final Cleaned Data:")
|
| 366 |
+
st.dataframe(data)
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
|
| 372 |
+
# Run the EDA app if the button is clicked
|
| 373 |
+
if 'page' not in st.session_state:
|
| 374 |
+
st.session_state.page = 'main'
|
| 375 |
+
|
| 376 |
+
# Navigation logic
|
| 377 |
+
if st.session_state.page == 'main':
|
| 378 |
+
main_page()
|
| 379 |
+
elif st.session_state.page == 'simple_eda_app':
|
| 380 |
+
simple_eda_app()
|
| 381 |
+
elif st.session_state.page == 'pre_processing':
|
| 382 |
+
preprocessing()
|