Spaces:
Sleeping
Sleeping
"""Streamlit app for Presidio.""" | |
from json import JSONEncoder | |
from typing import List | |
import pandas as pd | |
import spacy | |
import streamlit as st | |
from annotated_text import annotated_text | |
from presidio_analyzer import AnalyzerEngine, RecognizerResult, RecognizerRegistry | |
from presidio_analyzer.nlp_engine import NlpEngineProvider | |
from presidio_anonymizer import AnonymizerEngine | |
from presidio_anonymizer.entities import OperatorConfig | |
from transformers_rec import ( | |
STANFORD_COFIGURATION, | |
TransformersRecognizer, | |
BERT_DEID_CONFIGURATION, | |
) | |
from openai_fake_data_generator import * | |
# Helper methods | |
def analyzer_engine(model_path: str): | |
"""Return AnalyzerEngine. | |
:param model_path: Which model to use for NER: | |
"StanfordAIMI/stanford-deidentifier-base", | |
"obi/deid_roberta_i2b2", | |
"en_core_web_lg" | |
""" | |
registry = RecognizerRegistry() | |
registry.load_predefined_recognizers() | |
# Set up NLP Engine according to the model of choice | |
if model_path == "en_core_web_lg": | |
nlp_configuration = { | |
"nlp_engine_name": "spacy", | |
"models": [{"lang_code": "en", "model_name": "en_core_web_lg"}], | |
} | |
else: | |
# Using a small spaCy model + a HF NER model | |
transformers_recognizer = TransformersRecognizer(model_path=model_path) | |
if model_path == "StanfordAIMI/stanford-deidentifier-base": | |
transformers_recognizer.load_transformer(**STANFORD_COFIGURATION) | |
elif model_path == "obi/deid_roberta_i2b2": | |
transformers_recognizer.load_transformer(**BERT_DEID_CONFIGURATION) | |
# Use small spaCy model, no need for both spacy and HF models | |
# The transformers model is used here as a recognizer, not as an NlpEngine | |
nlp_configuration = { | |
"nlp_engine_name": "spacy", | |
"models": [{"lang_code": "en", "model_name": "en_core_web_sm"}], | |
} | |
registry.add_recognizer(transformers_recognizer) | |
nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine() | |
analyzer = AnalyzerEngine(nlp_engine=nlp_engine, registry=registry) | |
return analyzer | |
def anonymizer_engine(): | |
"""Return AnonymizerEngine.""" | |
return AnonymizerEngine() | |
def get_supported_entities(): | |
"""Return supported entities from the Analyzer Engine.""" | |
return analyzer_engine(st_model).get_supported_entities() | |
def analyze(**kwargs): | |
"""Analyze input using Analyzer engine and input arguments (kwargs).""" | |
if "entities" not in kwargs or "All" in kwargs["entities"]: | |
kwargs["entities"] = None | |
return analyzer_engine(st_model).analyze(**kwargs) | |
def anonymize(text: str, analyze_results: List[RecognizerResult]): | |
"""Anonymize identified input using Presidio Anonymizer. | |
:param text: Full text | |
:param analyze_results: list of results from presidio analyzer engine | |
""" | |
if st_operator == "mask": | |
operator_config = { | |
"type": "mask", | |
"masking_char": st_mask_char, | |
"chars_to_mask": st_number_of_chars, | |
"from_end": False, | |
} | |
elif st_operator == "encrypt": | |
operator_config = {"key": st_encrypt_key} | |
elif st_operator == "highlight": | |
operator_config = {"lambda": lambda x: x} | |
else: | |
operator_config = None | |
if st_operator == "highlight": | |
operator = "custom" | |
else: | |
operator = st_operator | |
res = anonymizer_engine().anonymize( | |
text, | |
analyze_results, | |
operators={"DEFAULT": OperatorConfig(operator, operator_config)}, | |
) | |
return res | |
def annotate(text: str, analyze_results: List[RecognizerResult]): | |
""" | |
Highlights every identified entity on top of the text. | |
:param text: full text | |
:param analyze_results: list of analyzer results. | |
""" | |
tokens = [] | |
# Use the anonymizer to resolve overlaps | |
results = anonymize(text, analyze_results) | |
# sort by start index | |
results = sorted(results.items, key=lambda x: x.start) | |
for i, res in enumerate(results): | |
if i == 0: | |
tokens.append(text[: res.start]) | |
# append entity text and entity type | |
tokens.append((text[res.start: res.end], res.entity_type)) | |
# if another entity coming i.e. we're not at the last results element, add text up to next entity | |
if i != len(results) - 1: | |
tokens.append(text[res.end: results[i + 1].start]) | |
# if no more entities coming, add all remaining text | |
else: | |
tokens.append(text[res.end:]) | |
return tokens | |
st.set_page_config(page_title="Presidio demo", layout="wide") | |
# Sidebar | |
st.sidebar.header( | |
""" | |
PII De-Identification with Microsoft Presidio | |
""" | |
) | |
st.sidebar.info( | |
"Presidio is an open source customizable framework for PII detection and de-identification\n" | |
"[Code](https://aka.ms/presidio) | " | |
"[Tutorial](https://microsoft.github.io/presidio/tutorial/) | " | |
"[Installation](https://microsoft.github.io/presidio/installation/) | " | |
"[FAQ](https://microsoft.github.io/presidio/faq/)", | |
icon="ℹ️", | |
) | |
st.sidebar.markdown( | |
"[![Pypi Downloads](https://img.shields.io/pypi/dm/presidio-analyzer.svg)](https://img.shields.io/pypi/dm/presidio-analyzer.svg)" | |
"[![MIT license](https://img.shields.io/badge/license-MIT-brightgreen.svg)](http://opensource.org/licenses/MIT)" | |
"![GitHub Repo stars](https://img.shields.io/github/stars/microsoft/presidio?style=social)" | |
) | |
st_model = st.sidebar.selectbox( | |
"NER model", | |
[ | |
"StanfordAIMI/stanford-deidentifier-base", | |
"obi/deid_roberta_i2b2", | |
"en_core_web_lg", | |
], | |
index=1, | |
) | |
st.sidebar.markdown("> Note: Models might take some time to download. ") | |
st_operator = st.sidebar.selectbox( | |
"De-identification approach", | |
["redact", "replace", "mask", "hash", "encrypt", "highlight"], | |
index=1, | |
) | |
if st_operator == "mask": | |
st_number_of_chars = st.sidebar.number_input( | |
"number of chars", value=15, min_value=0, max_value=100 | |
) | |
st_mask_char = st.sidebar.text_input("Mask character", value="*", max_chars=1) | |
elif st_operator == "encrypt": | |
st_encrypt_key = st.sidebar.text_input("AES key", value="WmZq4t7w!z%C&F)J") | |
st_threshold = st.sidebar.slider( | |
label="Acceptance threshold", min_value=0.0, max_value=1.0, value=0.35 | |
) | |
st_return_decision_process = st.sidebar.checkbox( | |
"Add analysis explanations to findings", value=False | |
) | |
st_entities = st.sidebar.multiselect( | |
label="Which entities to look for?", | |
options=get_supported_entities(), | |
default=list(get_supported_entities()), | |
) | |
# Main panel | |
analyzer_load_state = st.info("Starting Presidio analyzer...") | |
engine = analyzer_engine(model_path=st_model) | |
analyzer_load_state.empty() | |
# Read default text | |
with open("demo_text.txt") as f: | |
demo_text = f.readlines() | |
# Create two columns for before and after | |
col1, col2 = st.columns(2) | |
# Before: | |
col1.subheader("Input string:") | |
st_text = col1.text_area( | |
label="Enter text", | |
value="".join(demo_text), | |
height=400, | |
) | |
st_analyze_results = analyze( | |
text=st_text, | |
entities=st_entities, | |
language="en", | |
score_threshold=st_threshold, | |
return_decision_process=st_return_decision_process, | |
) | |
# After | |
if st_operator != "highlight": | |
with col2: | |
st.subheader(f"Output") | |
st_anonymize_results = anonymize(st_text, st_analyze_results) | |
st.text_area(label="De-identified", value=st_anonymize_results.text, height=400) | |
else: | |
st.subheader("Highlighted") | |
annotated_tokens = annotate(st_text, st_analyze_results) | |
# annotated_tokens | |
annotated_text(*annotated_tokens) | |
# json result | |
class ToDictEncoder(JSONEncoder): | |
"""Encode dict to json.""" | |
def default(self, o): | |
"""Encode to JSON using to_dict.""" | |
return o.to_dict() | |
# table result | |
st.subheader( | |
"Findings" if not st_return_decision_process else "Findings with decision factors" | |
) | |
if st_analyze_results: | |
df = pd.DataFrame.from_records([r.to_dict() for r in st_analyze_results]) | |
df["text"] = [st_text[res.start: res.end] for res in st_analyze_results] | |
df_subset = df[["entity_type", "text", "start", "end", "score"]].rename( | |
{ | |
"entity_type": "Entity type", | |
"text": "Text", | |
"start": "Start", | |
"end": "End", | |
"score": "Confidence", | |
}, | |
axis=1, | |
) | |
df_subset["Text"] = [st_text[res.start: res.end] for res in st_analyze_results] | |
if st_return_decision_process: | |
analysis_explanation_df = pd.DataFrame.from_records( | |
[r.analysis_explanation.to_dict() for r in st_analyze_results] | |
) | |
df_subset = pd.concat([df_subset, analysis_explanation_df], axis=1) | |
st.dataframe(df_subset.reset_index(drop=True), use_container_width=True) | |
else: | |
st.text("No findings") | |