Spaces:
Runtime error
Runtime error
| import torch | |
| import gradio as gr | |
| from torch import nn | |
| from torch.nn import functional as F | |
| import torchvision | |
| from PIL import Image | |
| from torchvision import transforms | |
| transformer = transforms.Compose([ | |
| transforms.Resize((256, 256)), | |
| # transforms.RandomHorizontalFlip(), | |
| #transforms.RandomRotation(degrees=10), | |
| transforms.ToTensor() | |
| #transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225 | |
| #]) | |
| ]) | |
| model=torch.jit.load('model.pt',map_location=torch.device('cpu')) | |
| #model=torch.jit.load('model1.pt') | |
| classes=['Minivan Car', 'Muscle Car ', 'Sedan Car', 'Sports Car', 'None of the Above class'] | |
| def predict(inp): | |
| inp=transformer(inp).unsqueeze(0) | |
| #inp = transforms.ToTensor()(inp).unsqueeze(0) | |
| with torch.no_grad(): | |
| prediction =F.softmax(model(inp)[0], dim=0) | |
| confidences = {classes[i]: float(prediction[i]) for i in range(5)} | |
| return confidences | |
| # gr.Interface(fn=predict, inputs=gr.Image(type="pil"),outputs=gr.Label(num_top_classes=4),title='Image classification',interpretation='default').launch(debug='True') | |
| gr.Interface(predict, gr.inputs.Image(type="pil"),outputs='label',title='Image classification').launch(debug='True') |