import numpy as np | |
class Utils: | |
def sparsify(label_vector, output_size): | |
sparse_vector = [] | |
for label in label_vector: | |
sparse_label = np.zeros(output_size) | |
sparse_label[label] = 1 | |
sparse_vector.append(sparse_label) | |
return np.array(sparse_vector) | |
def get_preprocessed_img(img_path, image_size): | |
import cv2 | |
# from keras.preprocessing.image import array_to_img, img_to_array | |
# img = array_to_img(img_path) | |
# img = img_to_array(img) | |
# img = cv2.imread(img_path) | |
# don't need to read the image as we're now directly passing the | |
# image as numpy array to this method | |
img = cv2.resize(img_path, (image_size, image_size)) | |
img = img.astype('float32') | |
img /= 255 | |
return img | |
def show(image): | |
import cv2 | |
cv2.namedWindow("view", cv2.WINDOW_AUTOSIZE) | |
cv2.imshow("view", image) | |
cv2.waitKey(0) | |
cv2.destroyWindow("view") | |