Spaces:
Runtime error
Runtime error
from fastapi import FastAPI, File, UploadFile | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
import torch | |
import torchaudio | |
import io | |
import soundfile as sf | |
import os | |
from pydub import AudioSegment | |
# --- FINAL FIX: Use the writable /tmp directory for the cache --- | |
# The /code directory is read-only in Hugging Face Spaces. /tmp is writable. | |
CACHE_DIR = "/tmp/huggingface-cache" | |
os.makedirs(CACHE_DIR, exist_ok=True) | |
# Initialize the FastAPI app | |
app = FastAPI() | |
# --- FIX: Load model and processor using the correct cache_dir --- | |
model_name = "facebook/wav2vec2-lv-60-espeak-cv-ft" | |
processor = Wav2Vec2Processor.from_pretrained(model_name, cache_dir=CACHE_DIR) | |
model = Wav2Vec2ForCTC.from_pretrained(model_name, cache_dir=CACHE_DIR) | |
# Ensure the model is in evaluation mode | |
model.eval() | |
# Function to convert audio to the required format | |
def convert_audio(audio_bytes): | |
try: | |
# Load audio from bytes using pydub | |
audio = AudioSegment.from_file(io.BytesIO(audio_bytes)) | |
# Set to mono | |
audio = audio.set_channels(1) | |
# Set sample rate to 16kHz | |
audio = audio.set_frame_rate(16000) | |
# Export to a buffer in WAV format | |
buffer = io.BytesIO() | |
audio.export(buffer, format="wav") | |
buffer.seek(0) | |
return buffer.read() | |
except Exception as e: | |
# This will catch errors if ffmpeg has issues with a specific file | |
raise ValueError(f"Error processing audio file: {e}") | |
async def assess_pronunciation(audio_file: UploadFile = File(...)): | |
""" | |
This endpoint takes an audio file, converts it, and returns the recognized phonemes. | |
""" | |
# Read the audio file content | |
audio_bytes = await audio_file.read() | |
# Convert audio to the model's required format (16kHz, mono WAV) | |
try: | |
processed_audio_bytes = convert_audio(audio_bytes) | |
except ValueError as e: | |
return {"error": str(e)} | |
# Load the waveform from the processed audio bytes | |
waveform, sample_rate = sf.read(io.BytesIO(processed_audio_bytes), dtype='float32') | |
# Process the audio waveform | |
input_values = processor(waveform, sampling_rate=sample_rate, return_tensors="pt", padding="longest").input_values | |
# Perform inference | |
with torch.no_grad(): | |
logits = model(input_values).logits | |
# Get the predicted IDs and decode them into phonemes | |
predicted_ids = torch.argmax(logits, dim=-1) | |
transcription = processor.batch_decode(predicted_ids) | |
# The output is a list with one item, so we return the item itself | |
return {"phoneme_transcription": transcription[0]} | |
def read_root(): | |
return {"message": "Wav2Vec2 Pronunciation Assessment API is running."} |