mixtral-search / middlewares /chat_client.py
pragneshbarik's picture
fixed errors
24db8bf
raw
history blame
2.06 kB
from huggingface_hub import InferenceClient
import os
from dotenv import load_dotenv
load_dotenv()
API_TOKEN = os.getenv("HF_TOKEN")
def format_prompt(session_state ,query, history, chat_client):
if chat_client=="NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO" :
model_input = f"""<|im_start|>system
{session_state.system_instruction}
"""
for user_prompt, bot_response in history:
model_input += f"""<|im_start|>user
{user_prompt}<|im_end|>
"""
model_input += f"""<|im_start|>assistant
{bot_response}<|im_end|>
"""
model_input += f"""<|im_start|>user
{query}<|im_end|>
<|im_start|>assistant"""
return model_input
else :
model_input = "<s>"
for user_prompt, bot_response in history:
model_input += f"[INST] {user_prompt} [/INST]"
model_input += f" {bot_response}</s> "
model_input += f"[INST] {query} [/INST]"
return model_input
def chat(session_state, query, config):
chat_bot_dict = config["CHAT_BOTS"]
chat_client = chat_bot_dict[session_state.chat_bot]
temperature = session_state.temp
max_new_tokens = session_state.max_tokens
repetion_penalty = session_state.repetion_penalty
history = session_state.history
client = InferenceClient(chat_client, token=API_TOKEN)
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(0.95)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetion_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(session_state, query, history, chat_client)
stream = client.text_generation(
formatted_prompt,
**generate_kwargs,
stream=True,
details=True,
return_full_text=False,
truncate = 32000
)
return stream