ikigai-chat / app.py
pragneshbarik's picture
set default retrieval to 4
c68a4b3
raw
history blame
8.74 kB
import streamlit as st
from chat_client import chat
import time
import pandas as pd
import pinecone
import os
from dotenv import load_dotenv
from sentence_transformers import SentenceTransformer
load_dotenv()
PINECONE_TOKEN = os.getenv('PINECONE_TOKEN')
pinecone.init(
api_key=PINECONE_TOKEN,
environment='gcp-starter'
)
PINECONE_INDEX = pinecone.Index('ikigai-chat')
TEXT_VECTORIZER = SentenceTransformer('all-distilroberta-v1')
CHAT_BOTS = {
"Mixtral 8x7B v0.1" :"mistralai/Mixtral-8x7B-Instruct-v0.1",
"Mistral 7B v0.1" : "mistralai/Mistral-7B-Instruct-v0.1",
}
COST_PER_1000_TOKENS_INR = 0.139
st.set_page_config(
page_title="Ikigai Chat",
page_icon="πŸ€–",
)
SYSTEM_PROMPT = [
"""
You are not Mistral AI, but rather a chat bot trained at Ikigai Labs. Whenever asked, you need to answer as Ikigai Labs' assistant.
Ikigai helps modern analysts and operations teams automate data-intensive business, finance, analytics, and supply-chain operations.
The company's Inventory Ops automates inventory tracking and monitoring by creating a single, real-time view of inventory across all locations and channels.
""",
"""
Yes, you are correct. Ikigai Labs is a company that specializes in helping
modern analysts and operations teams automate data-intensive business, finance, analytics,
and supply chain operations. One of their products is Inventory Ops, which automates inventory
tracking and monitoring by creating a single, real-time view of inventory across all locations and channels.
This helps businesses optimize their inventory levels and reduce costs.
Is there anything else you would like to know about Ikigai Labs or their products?
"""
]
IDENTITY_CHANGE = [
"""
You are Ikigai Chat from now on, so answer accordingly.
""",
"""
Sure, I will do my best to answer your questions as Ikigai Chat.
Let me know if you have any specific questions about Ikigai Labs or our products.
"""
]
def gen_augmented_prompt(prompt, top_k) :
query_vector = TEXT_VECTORIZER.encode(prompt).tolist()
res = PINECONE_INDEX.query(vector=query_vector, top_k=top_k, include_metadata=True)
matches = res['matches']
context = ""
links = []
for match in matches :
context+=match["metadata"]["chunk"] + "\n\n"
links.append(match["metadata"]["link"])
generated_prompt = f"""
FOR THIS GIVEN CONTEXT {context},
----
ANSWER THE FOLLOWING PROMPT {prompt}
"""
return generated_prompt, links
def init_state() :
if "messages" not in st.session_state:
st.session_state.messages = []
if "tokens_used" not in st.session_state:
st.session_state.tokens_used = 0
if "tps" not in st.session_state:
st.session_state.tps = 0
if "temp" not in st.session_state:
st.session_state.temp = 0.8
if "history" not in st.session_state:
st.session_state.history = [SYSTEM_PROMPT]
if "top_k" not in st.session_state:
st.session_state.top_k = 5
if "repetion_penalty" not in st.session_state :
st.session_state.repetion_penalty = 1
if "rag_enabled" not in st.session_state :
st.session_state.rag_enabled = True
if "chat_bot" not in st.session_state :
st.session_state.chat_bot = "Mixtral 8x7B v0.1"
def sidebar() :
def retrieval_settings() :
st.markdown("# Retrieval Settings")
st.session_state.rag_enabled = st.toggle("Activate RAG", value=True)
st.session_state.top_k = st.slider(label="Documents to retrieve",
min_value=1, max_value=20, value=4, disabled=not st.session_state.rag_enabled)
st.markdown("---")
def model_analytics() :
st.markdown("# Model Analytics")
st.write("Total tokens used :", st.session_state['tokens_used'])
st.write("Speed :", st.session_state['tps'], " tokens/sec")
st.write("Total cost incurred :", round(
COST_PER_1000_TOKENS_INR * st.session_state['tokens_used'] / 1000, 3), "INR")
st.markdown("---")
def model_settings() :
st.markdown("# Model Settings")
st.session_state.chat_bot = st.sidebar.radio(
'Select one:', [key for key, value in CHAT_BOTS.items() ])
st.session_state.temp = st.slider(
label="Temperature", min_value=0.0, max_value=1.0, step=0.1, value=0.9)
st.session_state.max_tokens = st.slider(
label="New tokens to generate", min_value = 64, max_value=2048, step= 32, value=512
)
st.session_state.repetion_penalty = st.slider(
label="Repetion Penalty", min_value=0., max_value=1., step=0.1, value=1.
)
with st.sidebar:
retrieval_settings()
model_analytics()
model_settings()
st.markdown("""
> **2023 ©️ [Pragnesh Barik](https://barik.super.site) πŸ”—**
""")
def header() :
data = {
"Attribute": ["LLM", "Text Vectorizer", "Vector Database","CPU", "System RAM"],
"Information": ["Mixtral-8x7B-Instruct-v0.1","all-distilroberta-v1", "Hosted Pinecone" ,"2 vCPU", "16 GB"]
}
df = pd.DataFrame(data)
st.image("ikigai.svg")
st.title("Ikigai Chat")
with st.expander("What is Ikigai Chat ?"):
st.info("""Ikigai Chat is a vector database powered chat agent, it works on the principle of
of Retrieval Augmented Generation (RAG), Its primary function revolves around maintaining an extensive repository of Ikigai Docs and providing users with answers that align with their queries.
This approach ensures a more refined and tailored response to user inquiries.""")
st.table(df)
def chat_box() :
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
def feedback_buttons() :
is_visible = True
def click_handler() :
is_visible = False
if is_visible :
col1, col2 = st.columns(2)
with col1 :
st.button("πŸ‘ Satisfied", on_click = click_handler,type="primary")
with col2 :
st.button("πŸ‘Ž Disatisfied", on_click=click_handler, type="secondary")
def generate_chat_stream(prompt) :
links = []
if st.session_state.rag_enabled :
with st.spinner("Fetching relevent documents from Ikigai Docs...."):
prompt, links = gen_augmented_prompt(prompt=prompt, top_k=st.session_state.top_k)
with st.spinner("Generating response...") :
chat_stream = chat(prompt, st.session_state.history,chat_client=CHAT_BOTS[st.session_state.chat_bot] ,
temperature=st.session_state.temp, max_new_tokens=st.session_state.max_tokens)
return chat_stream, links
def stream_handler(chat_stream, placeholder) :
start_time = time.time()
full_response = ''
for chunk in chat_stream :
if chunk.token.text!='</s>' :
full_response += chunk.token.text
placeholder.markdown(full_response + "β–Œ")
placeholder.markdown(full_response)
end_time = time.time()
elapsed_time = end_time - start_time
total_tokens_processed = len(full_response.split())
tokens_per_second = total_tokens_processed // elapsed_time
len_response = (len(prompt.split()) + len(full_response.split())) * 1.25
col1, col2, col3 = st.columns(3)
with col1 :
st.write(f"**{tokens_per_second} tokens/second**")
with col2 :
st.write(f"**{int(len_response)} tokens generated**")
with col3 :
st.write(f"**β‚Ή {round(len_response * COST_PER_1000_TOKENS_INR / 1000, 5)} cost incurred**" )
st.session_state['tps'] = tokens_per_second
st.session_state["tokens_used"] = len_response + st.session_state["tokens_used"]
return full_response
def show_source(links) :
with st.expander("Show source") :
for i, link in enumerate(links) :
st.info(f"{link}")
init_state()
sidebar()
header()
chat_box()
if prompt := st.chat_input("Chat with Ikigai Docs..."):
st.chat_message("user").markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
chat_stream, links = generate_chat_stream(prompt)
with st.chat_message("assistant"):
placeholder = st.empty()
full_response = stream_handler(chat_stream, placeholder)
if st.session_state.rag_enabled :
show_source(links)
st.session_state.history.append([prompt, full_response])
st.session_state.messages.append({"role": "assistant", "content": full_response})