bert_based_ner / app.py
pragnakalp's picture
Update app.py
b523034
raw
history blame
5.99 kB
import gradio as gr
from datetime import date
import json
import csv
import datetime
import smtplib
from email.mime.text import MIMEText
import requests
from transformers import AutoTokenizer, AutoModelWithLMHead
import gc
import os
import numpy as np
import json
from tqdm import trange
import torch
import torch.nn.functional as F
from bert_ner_model_loader import Ner
import pandas as pd
from huggingface_hub import Repository
import huggingface_hub
import socket
HF_TOKEN = os.environ.get("HF_TOKEN")
DATASET_NAME = "bert_base_ner"
DATASET_REPO_URL = f"https://huggingface.co/datasets/pragnakalp/{DATASET_NAME}"
DATA_FILENAME = "bert_base_ner_logs.csv"
DATA_FILE = os.path.join("bert_base_ner_logs", DATA_FILENAME)
DATASET_REPO_ID = "pragnakalp/bert_base_ner"
print("is none?", HF_TOKEN is None)
input_value = "The U.S. President Donald Trump came to visit Ahmedabad first time at Motera Stadium with our Prime Minister Narendra Modi in February 2020"
try:
hf_hub_download(
repo_id=DATASET_REPO_ID,
filename=DATA_FILENAME,
cache_dir=DATA_DIRNAME,
force_filename=DATA_FILENAME
)
except:
print("file not found")
repo = Repository(
local_dir="bert_base_ner_logs", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)
cwd = os.getcwd()
bert_ner_model = os.path.join(cwd)
Entities_Found =[]
Entity_Types = []
k = 0
def get_device_ip_address():
result = {}
if os.name == "nt":
result = "Running on Windows"
hostname = socket.gethostname()
ip_address = socket.gethostbyname(hostname)
result['ip_addr'] = ip_address
result['host'] = hostname
print(result)
return result
elif os.name == "posix":
gw = os.popen("ip -4 route show default").read().split()
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.connect((gw[2], 0))
ipaddr = s.getsockname()[0]
gateway = gw[2]
host = socket.gethostname()
result['ip_addr'] = ipaddr
result['host'] = host
print(result)
return result
else:
result['id'] = os.name + " not supported yet."
print(result)
return result
def generate_emotion(article):
text = "Input sentence: "
text += article
model_ner = Ner(bert_ner_model)
output = model_ner.predict(text)
print(output)
k = 0
Entities_Found.clear()
Entity_Types.clear()
save_data_and_sendmail(article,output)
for i in output:
for j in i:
if k == 0:
Entities_Found.append(j)
k += 1
else:
Entity_Types.append(j)
k = 0
result = {'Entities Found':Entities_Found, 'Entity Types':Entity_Types}
return pd.DataFrame(result)
def save_data_and_sendmail(article,output):
try:
print(">>"*30)
hostname = {}
hostname = get_device_ip_address()
# url = 'https://pragnakalpdev35.pythonanywhere.com/HF_space_que_gen'
# # url = 'http://pragnakalpdev33.pythonanywhere.com/HF_space_question_generator'
# myobj = {'article': article,'total_que': num_que,'gen_que':result,'ip_addr':hostname.get("ip_addr",""),'host':hostname.get("host","")}
# x = requests.post(url, json = myobj)
inputdata = article
ip = hostname.get("ip_addr","")
print(ip)
url = 'https://pragnakalpdev33.pythonanywhere.com/HF_space_bert_base_ner'
# url = 'http://pragnakalpdev33.pythonanywhere.com/HF_space_question_generator'
myobj = {'article': article,'gen_text':output,'ip_addr':hostname.get("ip_addr",""),'host':hostname.get("host","")}
x = requests.post(url, json = myobj)
add_csv = [inputdata,output,ip]
with open(DATA_FILE, "a") as f:
writer = csv.writer(f)
# write the data
writer.writerow(add_csv)
commit_url = repo.push_to_hub()
print("commit data :",commit_url)
return "Successfully save data"
except Exception as e:
return "Error while sending mail" + str(e)
with gr.Blocks(css = ".gradio-container {background-color: lightgray}") as demo:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>"
+ "Named Entity Recognition Using BERT"
+ "</h1>")
with gr.Row(): [Neon Coqui TTS Plugin](https://github.com/NeonGeckoCom/neon-tts-plugin-coqui)
with gr.Column():
input=gr.Textbox(lines=5, value=input_value, label="Input Text", elem_id="inp_div")
sub_btn = gr.Button("Submit")
output = [gr.Dataframe(row_count = (3, "dynamic"), col_count=(2, "fixed"), label="Here is the Result", headers=["Entities Found","Entity Types"])]
gr.Markdown(
"""
Feel free to give us your <a href="https://www.pragnakalp.com/contact/"> feedback </a> on this NER demo.
For all your Named Entity Recognition related requirements, we are here to help you.<br />
Email us your requirement at <a href="mailto:letstalk@pragnakalp.com"> letstalk@pragnakalp.com </a> .
And don't forget to check out more interesting <a href="https://www.pragnakalp.com/services/natural-language-processing-services/">NLP services</a> we are offering.</ br>
<p style='text-align: center;><b>Developed by</b> : <a href="https://www.pragnakalp.com" target="_blank">Pragnakalp Techlabs </a>
""")
event = sub_btn.click(generate_emotion, inputs=input, outputs=output)
demo.launch()
# demo = gr.Interface(
# generate_emotion,
# inputs,
# outputs,
# title="Entity Recognition For Input Text",
# description="Feel free to give your feedback",
# css=".gradio-container {background-color: lightgray} #inp_div {background-color: [#7](https://www1.example.com/issues/7)FB3D5;"
# )
# demo.launch()