Spaces:
Running
Running
import sys | |
if sys.version_info[0] < 3 and sys.version_info[1] < 2: | |
raise Exception("Must be using >= Python 3.2") | |
from os import listdir, path | |
if not path.isfile('face_detection/detection/sfd/s3fd.pth'): | |
raise FileNotFoundError('Save the s3fd model to face_detection/detection/sfd/s3fd.pth \ | |
before running this script!') | |
import multiprocessing as mp | |
from concurrent.futures import ThreadPoolExecutor, as_completed | |
import numpy as np | |
import argparse, os, cv2, traceback, subprocess | |
from tqdm import tqdm | |
from glob import glob | |
import audio | |
from hparams import hparams as hp | |
import face_detection | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--ngpu', help='Number of GPUs across which to run in parallel', default=1, type=int) | |
parser.add_argument('--batch_size', help='Single GPU Face detection batch size', default=32, type=int) | |
parser.add_argument("--data_root", help="Root folder of the LRS2 dataset", required=True) | |
parser.add_argument("--preprocessed_root", help="Root folder of the preprocessed dataset", required=True) | |
args = parser.parse_args() | |
fa = [face_detection.FaceAlignment(face_detection.LandmarksType._2D, flip_input=False, | |
device='cuda:{}'.format(id)) for id in range(args.ngpu)] | |
template = 'ffmpeg -loglevel panic -y -i {} -strict -2 {}' | |
# template2 = 'ffmpeg -hide_banner -loglevel panic -threads 1 -y -i {} -async 1 -ac 1 -vn -acodec pcm_s16le -ar 16000 {}' | |
def process_video_file(vfile, args, gpu_id): | |
video_stream = cv2.VideoCapture(vfile) | |
frames = [] | |
while 1: | |
still_reading, frame = video_stream.read() | |
if not still_reading: | |
video_stream.release() | |
break | |
frames.append(frame) | |
vidname = os.path.basename(vfile).split('.')[0] | |
dirname = vfile.split('/')[-2] | |
fulldir = path.join(args.preprocessed_root, dirname, vidname) | |
os.makedirs(fulldir, exist_ok=True) | |
batches = [frames[i:i + args.batch_size] for i in range(0, len(frames), args.batch_size)] | |
i = -1 | |
for fb in batches: | |
preds = fa[gpu_id].get_detections_for_batch(np.asarray(fb)) | |
for j, f in enumerate(preds): | |
i += 1 | |
if f is None: | |
continue | |
x1, y1, x2, y2 = f | |
cv2.imwrite(path.join(fulldir, '{}.jpg'.format(i)), fb[j][y1:y2, x1:x2]) | |
def process_audio_file(vfile, args): | |
vidname = os.path.basename(vfile).split('.')[0] | |
dirname = vfile.split('/')[-2] | |
fulldir = path.join(args.preprocessed_root, dirname, vidname) | |
os.makedirs(fulldir, exist_ok=True) | |
wavpath = path.join(fulldir, 'audio.wav') | |
command = template.format(vfile, wavpath) | |
subprocess.call(command, shell=True) | |
def mp_handler(job): | |
vfile, args, gpu_id = job | |
try: | |
process_video_file(vfile, args, gpu_id) | |
except KeyboardInterrupt: | |
exit(0) | |
except: | |
traceback.print_exc() | |
def main(args): | |
print('Started processing for {} with {} GPUs'.format(args.data_root, args.ngpu)) | |
filelist = glob(path.join(args.data_root, '*/*.mp4')) | |
jobs = [(vfile, args, i%args.ngpu) for i, vfile in enumerate(filelist)] | |
p = ThreadPoolExecutor(args.ngpu) | |
futures = [p.submit(mp_handler, j) for j in jobs] | |
_ = [r.result() for r in tqdm(as_completed(futures), total=len(futures))] | |
print('Dumping audios...') | |
for vfile in tqdm(filelist): | |
try: | |
process_audio_file(vfile, args) | |
except KeyboardInterrupt: | |
exit(0) | |
except: | |
traceback.print_exc() | |
continue | |
if __name__ == '__main__': | |
main(args) |