Spaces:
Running
Running
import gradio as gr | |
import tensorflow as tf | |
import keras_ocr | |
import requests | |
import cv2 | |
import os | |
import csv | |
import numpy as np | |
import pandas as pd | |
import huggingface_hub | |
from huggingface_hub import Repository | |
from datetime import datetime | |
import scipy.ndimage.interpolation as inter | |
import easyocr | |
import datasets | |
from datasets import load_dataset, Image | |
from PIL import Image | |
from paddleocr import PaddleOCR | |
from save_data import flag | |
""" | |
Paddle OCR | |
""" | |
def ocr_with_paddle(img): | |
finaltext = '' | |
ocr = PaddleOCR(lang='en', use_angle_cls=True) | |
# img_path = 'exp.jpeg' | |
result = ocr.ocr(img) | |
for i in range(len(result[0])): | |
text = result[0][i][1][0] | |
finaltext += ' '+ text | |
return finaltext | |
""" | |
Keras OCR | |
""" | |
def ocr_with_keras(img): | |
output_text = '' | |
pipeline=keras_ocr.pipeline.Pipeline() | |
images=[keras_ocr.tools.read(img)] | |
predictions=pipeline.recognize(images) | |
first=predictions[0] | |
for text,box in first: | |
output_text += ' '+ text | |
return output_text | |
""" | |
easy OCR | |
""" | |
# gray scale image | |
def get_grayscale(image): | |
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
# Thresholding or Binarization | |
def thresholding(src): | |
return cv2.threshold(src,127,255, cv2.THRESH_TOZERO)[1] | |
def ocr_with_easy(img): | |
gray_scale_image=get_grayscale(img) | |
thresholding(gray_scale_image) | |
cv2.imwrite('image.png',gray_scale_image) | |
reader = easyocr.Reader(['th','en']) | |
bounds = reader.readtext('image.png',paragraph="False",detail = 0) | |
bounds = ''.join(bounds) | |
return bounds | |
""" | |
Generate OCR | |
""" | |
def generate_ocr(Method,img): | |
text_output = '' | |
if (img).any(): | |
add_csv = [] | |
image_id = 1 | |
print("Method___________________",Method) | |
if Method == 'EasyOCR': | |
text_output = ocr_with_easy(img) | |
if Method == 'KerasOCR': | |
text_output = ocr_with_keras(img) | |
if Method == 'PaddleOCR': | |
text_output = ocr_with_paddle(img) | |
try: | |
flag(Method,text_output,img) | |
except Exception as e: | |
print(e) | |
return text_output | |
else: | |
raise gr.Error("Please upload an image!!!!") | |
# except Exception as e: | |
# print("Error in ocr generation ==>",e) | |
# text_output = "Something went wrong" | |
# return text_output | |
""" | |
Create user interface for OCR demo | |
""" | |
image = gr.Image(shape=(300, 300)) | |
# image = gr.Image() | |
method = gr.Radio(["PaddleOCR","EasyOCR", "KerasOCR"],value="PaddleOCR") | |
output = gr.Textbox(label="Output") | |
demo = gr.Interface( | |
generate_ocr, | |
[method,image], | |
output, | |
title="Optical Character Recognition", | |
css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}", | |
article = """<p style='text-align: center;'>Feel free to give us your thoughts on this demo and please contact us at | |
<a href="mailto:letstalk@pragnakalp.com" target="_blank">letstalk@pragnakalp.com</a> | |
<p style='text-align: center;'>Developed by: <a href="https://www.pragnakalp.com" target="_blank">Pragnakalp Techlabs</a></p>""" | |
) | |
demo.launch(enable_queue = False) | |
# demo.launch() | |