|
import gradio as gr |
|
import tensorflow as tf |
|
import keras_ocr |
|
import requests |
|
import cv2 |
|
import os |
|
import csv |
|
import numpy as np |
|
import pandas as pd |
|
import huggingface_hub |
|
from huggingface_hub import Repository |
|
from datetime import datetime |
|
import scipy.ndimage.interpolation as inter |
|
import easyocr |
|
import datasets |
|
from datasets import load_dataset, Image |
|
from PIL import Image |
|
from paddleocr import PaddleOCR |
|
from save_data import flag |
|
import spaces |
|
import pytesseract |
|
from PIL import Image |
|
import torch |
|
|
|
zero = torch.Tensor([0]).cuda() |
|
|
|
print(zero.device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Paddle OCR |
|
""" |
|
@spaces.GPU |
|
def ocr_with_paddle(img): |
|
print(zero.device) |
|
finaltext = '' |
|
ocr = PaddleOCR(use_gpu=True,lang='en',use_angle_cls=True) |
|
|
|
result = ocr.ocr(img) |
|
|
|
for i in range(len(result[0])): |
|
text = result[0][i][1][0] |
|
finaltext += ' '+ text |
|
return finaltext |
|
|
|
|
|
""" |
|
Keras OCR |
|
""" |
|
@spaces.GPU |
|
def ocr_with_keras(img): |
|
print(zero.device) |
|
output_text = '' |
|
pipeline=keras_ocr.pipeline.Pipeline().to(device) |
|
images=[keras_ocr.tools.read(img)] |
|
predictions=pipeline.recognize(images).to(device) |
|
first=predictions[0] |
|
for text,box in first: |
|
output_text += ' '+ text |
|
return output_text |
|
|
|
""" |
|
easy OCR |
|
""" |
|
|
|
def get_grayscale(image): |
|
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) |
|
|
|
|
|
def thresholding(src): |
|
return cv2.threshold(src,127,255, cv2.THRESH_TOZERO)[1] |
|
|
|
@spaces.GPU |
|
def ocr_with_easy(img): |
|
gray_scale_image=get_grayscale(img) |
|
thresholding(gray_scale_image) |
|
cv2.imwrite('image.png',gray_scale_image) |
|
reader = easyocr.Reader(['th','en']) |
|
bounds = reader.readtext('image.png',paragraph="False",detail = 0) |
|
bounds = ''.join(bounds) |
|
return bounds |
|
|
|
""" |
|
Generate OCR |
|
""" |
|
def generate_ocr(Method,img): |
|
|
|
text_output = '' |
|
print("\n\n img :",img.any()) |
|
print("\n\n img.any :",(img).any()) |
|
if img.any() or (img).any(): |
|
add_csv = [] |
|
image_id = 1 |
|
print("Method___________________",Method) |
|
if Method == 'EasyOCR': |
|
text_output = ocr_with_easy(img) |
|
if Method == 'KerasOCR': |
|
text_output = ocr_with_keras(img) |
|
if Method == 'PaddleOCR': |
|
text_output = ocr_with_paddle(img) |
|
|
|
try: |
|
flag(Method,text_output,img) |
|
except Exception as e: |
|
print(e) |
|
return text_output |
|
else: |
|
raise gr.Error("Please upload an image!!!!") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Create user interface for OCR demo |
|
""" |
|
|
|
|
|
image = gr.Image() |
|
method = gr.Radio(["PaddleOCR","EasyOCR", "KerasOCR"],value="PaddleOCR") |
|
output = gr.Textbox(label="Output") |
|
|
|
demo = gr.Interface( |
|
generate_ocr, |
|
[method,image], |
|
output, |
|
title="Optical Character Recognition", |
|
css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}", |
|
article = """<p style='text-align: center;'>Feel free to give us your thoughts on this demo and please contact us at |
|
<a href="mailto:letstalk@pragnakalp.com" target="_blank">letstalk@pragnakalp.com</a> |
|
<p style='text-align: center;'>Developed by: <a href="https://www.pragnakalp.com" target="_blank">Pragnakalp Techlabs</a></p>""" |
|
|
|
|
|
) |
|
|
|
demo.launch() |
|
|