Audio_Emotion_Recognition / ser_detection.py
pragnakalp's picture
Upload ser_detection.py
1c256c5
from __future__ import absolute_import, division, print_function, unicode_literals
from flask import Flask, make_response, render_template, request, jsonify, redirect, url_for, send_from_directory
from flask_cors import CORS
import sys
import os
import librosa
import librosa.display
import numpy as np
import warnings
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense
from keras.utils import to_categorical
from keras.layers import Flatten, Dropout, Activation
from keras.layers import Conv2D, MaxPooling2D
from keras.layers.normalization import BatchNormalization
from sklearn.model_selection import train_test_split
from tqdm import tqdm
# import scipy.io.wavfile as wav
# from speechpy.feature import mfcc
import pyaudio
import wave
warnings.filterwarnings("ignore")
app = Flask(__name__)
CORS(app)
classLabels = ('Angry', 'Fear', 'Disgust', 'Happy', 'Sad', 'Surprised', 'Neutral')
numLabels = len(classLabels)
in_shape = (39,216)
model = Sequential()
model.add(Conv2D(8, (13, 13), input_shape=(in_shape[0], in_shape[1], 1)))
model.add(BatchNormalization(axis=-1))
model.add(Activation('relu'))
model.add(Conv2D(8, (13, 13)))
model.add(BatchNormalization(axis=-1))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 1)))
model.add(Conv2D(8, (3, 3)))
model.add(BatchNormalization(axis=-1))
model.add(Activation('relu'))
model.add(Conv2D(8, (1, 1)))
model.add(BatchNormalization(axis=-1))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 1)))
model.add(Flatten())
model.add(Dense(64))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(numLabels, activation='softmax'))
model.compile(loss='binary_crossentropy', optimizer='adam',
metrics=['accuracy'])
# print(model.summary(), file=sys.stderr)
model.load_weights('speech_emotion_detection_ravdess_savee.h5')
def detect_emotion(file_name):
X, sample_rate = librosa.load(file_name, res_type='kaiser_best',duration=2.5,sr=22050*2,offset=0.5)
sample_rate = np.array(sample_rate)
mfccs = librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=39)
feature = mfccs
print("Feature_shape =>",feature.shape)
feature = feature.reshape(39, 216, 1)
result = classLabels[np.argmax(model.predict(np.array([feature])))]
print("Result ==> ",result)
return result
@app.route("/speech-emotion-recognition/")
def emotion_detection():
filename = 'audio_files/Happy.wav'
result = detect_emotion(filename)
return result
@app.route("/record_audio/")
def record_audio():
CHUNK = 1024
FORMAT = pyaudio.paInt16 #paInt8
CHANNELS = 2
RATE = 44100 #sample rate
RECORD_SECONDS = 4
fileList = os.listdir('recorded_audio')
print("Audio File List ==> ",fileList)
new_wav_file = ""
if(fileList):
filename_list = []
for i in fileList:
print(i)
filename = i.split('.')[0]
filename_list.append(filename)
max_file = max(filename_list)
print(type(max_file))
new_wav_file = int(max_file) + 1
else:
new_wav_file="1"
new_wav_file = str(new_wav_file) + ".wav"
filepath = os.path.join('recorded_audio', new_wav_file)
WAVE_OUTPUT_FILENAME = filepath
print(WAVE_OUTPUT_FILENAME)
p = pyaudio.PyAudio()
stream = p.open(format=FORMAT,
channels=CHANNELS,
rate=RATE,
input=True,
frames_per_buffer=CHUNK) #buffer
print("* recording")
frames = []
for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
data = stream.read(CHUNK)
frames.append(data) # 2 bytes(16 bits) per channel
print("* done recording")
stream.stop_stream()
stream.close()
p.terminate()
wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
wf.setnchannels(CHANNELS)
wf.setsampwidth(p.get_sample_size(FORMAT))
wf.setframerate(RATE)
wf.writeframes(b''.join(frames))
wf.close()
return "Audio Recorded"
if __name__ == "__main__":
app.run()