Spaces:
Runtime error
Runtime error
make barebones gradio interface
Browse files- app.py +12 -0
- listener.py +119 -0
- requirements.txt +0 -0
- utils.py +97 -0
app.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from listener import Listener
|
3 |
+
|
4 |
+
listener = Listener("pragmatic-programs/pragmatic-ft-listener", {"do_sample": True, "num_return_sequences": 100, "num_beams": 1, "temperature": 1, "top_p": 0.9})
|
5 |
+
|
6 |
+
def synthesize(context):
|
7 |
+
spec = [[[s[:-1], s[-1]] for s in context.split(' ')]]
|
8 |
+
return listener.synthesize(spec).programs[0][0]
|
9 |
+
|
10 |
+
|
11 |
+
iface = gr.Interface(fn=synthesize, inputs="text", outputs="text")
|
12 |
+
iface.launch()
|
listener.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, GenerationConfig
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import List, Optional
|
4 |
+
from utils import get_preprocess_function, get_utterance_processing_functions, byt5_decode_batch, consistent
|
5 |
+
from utils import PROGRAM_SPECIAL_TOKEN, UTTERANCES_SPECIAL_TOKEN, GT_PROGRAM_SPECIAL_TOKEN
|
6 |
+
from greenery import parse
|
7 |
+
from greenery.parse import NoMatch
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
|
11 |
+
class Agent:
|
12 |
+
def __init__(self,
|
13 |
+
model_path: str,
|
14 |
+
gen_config: dict,
|
15 |
+
inference_batch_size: int = 1,
|
16 |
+
):
|
17 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
|
18 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
19 |
+
self.gen_config = GenerationConfig(**gen_config)
|
20 |
+
self.inference_batch_size = inference_batch_size
|
21 |
+
|
22 |
+
@dataclass
|
23 |
+
class ListenerOutput:
|
24 |
+
programs: List[List[str]]
|
25 |
+
idx: Optional[List[List[int]]] = None
|
26 |
+
decoded: Optional[List[List[str]]] = None
|
27 |
+
decoded_scores: Optional[List[List[float]]] = None
|
28 |
+
pruned: Optional[List[List[str]]] = None
|
29 |
+
|
30 |
+
class Listener(Agent):
|
31 |
+
def __init__(self,
|
32 |
+
model_path,
|
33 |
+
gen_config,
|
34 |
+
inference_batch_size=4,
|
35 |
+
label_pos="suffix",
|
36 |
+
idx: bool=True,
|
37 |
+
program_special_token=PROGRAM_SPECIAL_TOKEN,
|
38 |
+
utterances_special_token=UTTERANCES_SPECIAL_TOKEN
|
39 |
+
):
|
40 |
+
super().__init__(
|
41 |
+
model_path,
|
42 |
+
gen_config,
|
43 |
+
inference_batch_size,
|
44 |
+
)
|
45 |
+
self.label_pos = label_pos
|
46 |
+
self.idx = idx
|
47 |
+
self.program_special_token = program_special_token
|
48 |
+
self.utterances_special_token = utterances_special_token
|
49 |
+
self.utterances_to_string, self.string_to_utterances = (
|
50 |
+
get_utterance_processing_functions(
|
51 |
+
label_pos, idx, separator=utterances_special_token
|
52 |
+
)
|
53 |
+
)
|
54 |
+
self.device = self.model.device
|
55 |
+
|
56 |
+
def synthesize(self, context, return_scores=False, enforce_consistency=True):
|
57 |
+
# If context is a list of utterances, convert to string
|
58 |
+
if isinstance(context[0], list):
|
59 |
+
context_str = list(map(self.utterances_to_string, context))
|
60 |
+
else:
|
61 |
+
context_str = context
|
62 |
+
|
63 |
+
context_tokens = self.tokenizer(
|
64 |
+
[f"{self.utterances_special_token}{c}" if not c.startswith(self.utterances_special_token) else c
|
65 |
+
for c in context_str],
|
66 |
+
return_tensors="pt",
|
67 |
+
padding=True
|
68 |
+
).to(self.device)
|
69 |
+
|
70 |
+
decoder_inputs = self.tokenizer(
|
71 |
+
[self.program_special_token for _ in context], return_tensors="pt",
|
72 |
+
add_special_tokens=False
|
73 |
+
).to(self.device)
|
74 |
+
|
75 |
+
outputs = self.model.generate(**context_tokens,
|
76 |
+
decoder_input_ids=decoder_inputs.input_ids,
|
77 |
+
generation_config=self.gen_config,
|
78 |
+
return_dict_in_generate=True,
|
79 |
+
output_scores=True
|
80 |
+
)
|
81 |
+
|
82 |
+
decoded_batch = byt5_decode_batch(outputs.sequences.reshape((len(context), -1, outputs.sequences.shape[-1])).tolist(), skip_position_token=True, skip_special_tokens=True)
|
83 |
+
|
84 |
+
consistent_programs = []
|
85 |
+
idxs = []
|
86 |
+
for decoded, ctx in zip(decoded_batch, context):
|
87 |
+
cp = []
|
88 |
+
idx = []
|
89 |
+
for i, p in enumerate(decoded):
|
90 |
+
if enforce_consistency:
|
91 |
+
if consistent(p, ctx):
|
92 |
+
cp.append(p)
|
93 |
+
idx.append(i)
|
94 |
+
else:
|
95 |
+
cp.append(p)
|
96 |
+
idx.append(i)
|
97 |
+
|
98 |
+
consistent_programs.append(cp)
|
99 |
+
idxs.append(idx)
|
100 |
+
|
101 |
+
logprobs = torch.stack(outputs.scores, dim=1).log_softmax(dim=-1)
|
102 |
+
gen_probs = torch.gather(logprobs, 2, outputs.sequences[:, 1:, None]).squeeze(-1)
|
103 |
+
gen_probs.masked_fill_(gen_probs.isinf(), 0)
|
104 |
+
scores = gen_probs.sum(-1)
|
105 |
+
n_decoded = scores.shape[0]
|
106 |
+
n_seq = n_decoded // len(context)
|
107 |
+
scores = scores.reshape((len(context), n_seq))
|
108 |
+
scores_list = scores.tolist()
|
109 |
+
|
110 |
+
if return_scores:
|
111 |
+
return ListenerOutput(
|
112 |
+
consistent_programs,
|
113 |
+
idxs,
|
114 |
+
decoded_batch,
|
115 |
+
scores_list
|
116 |
+
)
|
117 |
+
else:
|
118 |
+
return ListenerOutput(consistent_programs)
|
119 |
+
|
requirements.txt
ADDED
File without changes
|
utils.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import regex as re
|
2 |
+
|
3 |
+
PROGRAM_SPECIAL_TOKEN="<extra_id_124>"
|
4 |
+
UTTERANCES_SPECIAL_TOKEN="<extra_id_123>"
|
5 |
+
GT_PROGRAM_SPECIAL_TOKEN="<extra_id_122>"
|
6 |
+
|
7 |
+
def consistent(rx, spec):
|
8 |
+
# spec is in the form of (string, '+'/'-') pairs
|
9 |
+
for s, label in spec:
|
10 |
+
if not label in ['+', '-']:
|
11 |
+
return None
|
12 |
+
try:
|
13 |
+
if re.fullmatch(rx, s, timeout=1):
|
14 |
+
if label == '-':
|
15 |
+
return False
|
16 |
+
else:
|
17 |
+
if label == '+':
|
18 |
+
return False
|
19 |
+
except re.error:
|
20 |
+
return None
|
21 |
+
except TimeoutError:
|
22 |
+
return None
|
23 |
+
|
24 |
+
return True
|
25 |
+
|
26 |
+
def decode(c):
|
27 |
+
if c < 3:
|
28 |
+
return f"<{c}>"
|
29 |
+
elif c < 258:
|
30 |
+
return chr(c - 3)
|
31 |
+
else:
|
32 |
+
return f"<extra_id_{c - 259}>"
|
33 |
+
|
34 |
+
def byt5_decode_batch(outputs, skip_special_tokens=True, skip_position_token=False):
|
35 |
+
skipped_tokens = outputs
|
36 |
+
if skip_special_tokens:
|
37 |
+
skipped_tokens = [
|
38 |
+
[[t for t in x if t >= 3] for x in beam]
|
39 |
+
for beam in skipped_tokens
|
40 |
+
]
|
41 |
+
|
42 |
+
if skip_position_token:
|
43 |
+
skipped_tokens = [
|
44 |
+
[[t for t in x if t <= 258] for x in beam]
|
45 |
+
for beam in skipped_tokens
|
46 |
+
]
|
47 |
+
|
48 |
+
return [
|
49 |
+
[''.join([decode(t) for t in x]) for x in beam]
|
50 |
+
for beam in skipped_tokens
|
51 |
+
]
|
52 |
+
|
53 |
+
def get_preprocess_function(tokenizer):
|
54 |
+
def preprocess_function(examples):
|
55 |
+
model_inputs = tokenizer(
|
56 |
+
[' ' if x is None else x for x in examples["context"]],
|
57 |
+
text_target=examples["target"],
|
58 |
+
truncation=True
|
59 |
+
)
|
60 |
+
return model_inputs
|
61 |
+
|
62 |
+
return preprocess_function
|
63 |
+
|
64 |
+
def get_utterance_processing_functions(label_pos, idx, separator=' '):
|
65 |
+
if label_pos == "suffix":
|
66 |
+
if idx:
|
67 |
+
def utterances_to_string(spec):
|
68 |
+
return ''.join([f"<extra_id_{i}>{s}{label}" for i, (s, label) in enumerate(spec)])
|
69 |
+
else:
|
70 |
+
def utterances_to_string(spec):
|
71 |
+
return separator.join([f"{s}{label}" for s, label in spec])
|
72 |
+
else:
|
73 |
+
if idx:
|
74 |
+
def utterances_to_string(spec):
|
75 |
+
return ''.join([f"<extra_id_{i}>{label}{s}" for i, (s, label) in enumerate(spec)])
|
76 |
+
else:
|
77 |
+
def utterances_to_string(spec):
|
78 |
+
return separator.join([f"{label}{s}" for s, label in spec])
|
79 |
+
|
80 |
+
if label_pos == "suffix":
|
81 |
+
if idx:
|
82 |
+
def string_to_utterances(string):
|
83 |
+
string = re.sub(r'<extra_id_\d+>', ' ', string)
|
84 |
+
return [(s[:-1], s[-1]) for s in string.split(' ') if len(s) > 0]
|
85 |
+
else:
|
86 |
+
def string_to_utterances(string):
|
87 |
+
return [(s[:-1], s[-1]) for s in string.split(separator) if len(s) > 0]
|
88 |
+
else:
|
89 |
+
if idx:
|
90 |
+
def string_to_utterances(string):
|
91 |
+
string = re.sub(r'<extra_id_\d+>', '', string)
|
92 |
+
return [(s[1:], s[0]) for s in string.split(separator) if len(s) > 0]
|
93 |
+
else:
|
94 |
+
def string_to_utterances(string):
|
95 |
+
return [(s[1:], s[0]) for s in string.split(separator) if len(s) > 0]
|
96 |
+
|
97 |
+
return utterances_to_string, string_to_utterances
|