Spaces:
Build error
Build error
# import gradio as gr | |
# import os | |
# def greet(name): | |
# return "Hello " + name + "!" | |
# # Create the simplest possible Gradio interface | |
# iface = gr.Interface( | |
# fn=greet, | |
# inputs="text", | |
# outputs="text", | |
# title="Test Gradio App", | |
# description="This is a simple test app to check if Gradio launches.", | |
# flagging_dir="/tmp/gradio_flagged_data" # <--- ADD THIS LINE BACK! | |
# ) | |
# # Use a specific port for Gradio within the Docker container. | |
# # This matches the EXPOSE 7860 in your Dockerfile. | |
# # It also sets share=False for deployment contexts like Spaces. | |
# iface.launch(server_name="0.0.0.0", server_port=7860, share=False) | |
import gradio as gr | |
# from transformers import pipeline | |
# from langchain_community.llms import OpenAI | |
# from langchain.chains import LLMChain | |
# from langchain.prompts import PromptTemplate | |
# from langchain_community.document_loaders import PyPDFLoader | |
def load_document(file_path): | |
"""Loads a PDF document and returns its content.""" | |
loader = PyPDFLoader(file_path) | |
pages = loader.load_and_split() | |
return "".join([page.page_content for page in pages]) | |
def summarize_text(text): | |
"""Summarizes the given text using a pre-trained model.""" | |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") | |
summary = summarizer(text, max_length=500, min_length=100, do_sample=False) | |
return summary[0]['summary_text'] | |
def identify_future_research(text): | |
"""Uses a language model to identify future research scope.""" | |
llm = OpenAI(temperature=0.7) # You can also use open-source models from Hugging Face Hub | |
prompt_template = """ | |
Based on the following research paper, identify and suggest potential areas for future research. | |
Be specific and provide actionable insights. | |
Research Paper Content: | |
{paper_content} | |
Future Research Scope: | |
""" | |
prompt = PromptTemplate( | |
input_variables=["paper_content"], | |
template=prompt_template | |
) | |
chain = LLMChain(llm=llm, prompt=prompt) | |
future_scope = chain.run(paper_content=text) | |
return future_scope | |
def analyze_paper(file): | |
"""The main function that orchestrates the analysis.""" | |
if file is not None: | |
# paper_text = load_document(file.name) | |
# summary = summarize_text(paper_text) | |
# future_scope = identify_future_research(paper_text) | |
# return summary, future_scope | |
return "Dummy Summary Placeholder", "Dummy Future Scope Placeholder" | |
return "Please upload a research paper.", "" | |
iface = gr.Interface( | |
fn=analyze_paper, | |
inputs=gr.File(label="Upload Research Paper (PDF)"), | |
outputs=[ | |
gr.Textbox(label="Summary of the Paper"), | |
gr.Textbox(label="Scope for Further Research") | |
], | |
flagging_dir="/tmp/gradio_flagged_data", | |
title="AI Research Assistant", | |
description="Upload a research paper to get a summary and identify potential areas for future research.", | |
theme="huggingface" | |
) | |
iface.launch(share=True, debug=True) | |