theostos commited on
Commit
6c3fbea
1 Parent(s): 8f4c909

first commit, add gitignore

Browse files
Files changed (4) hide show
  1. .gitignore +3 -0
  2. app.py +3 -32
  3. models/modeling_llamask.py +117 -0
  4. models/tokenizer_utils.py +83 -0
.gitignore ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ /__pycache__
2
+
3
+ .pyc
app.py CHANGED
@@ -15,29 +15,7 @@ def respond(
15
  temperature,
16
  top_p,
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
 
42
  """
43
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
@@ -45,16 +23,9 @@ For information on how to customize the ChatInterface, peruse the gradio docs: h
45
  demo = gr.ChatInterface(
46
  respond,
47
  additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
  ],
59
  )
60
 
 
15
  temperature,
16
  top_p,
17
  ):
18
+ return "test", []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  """
21
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
 
23
  demo = gr.ChatInterface(
24
  respond,
25
  additional_inputs=[
26
+ gr.Markdown("Please enter your message. Add privacy tags (<sensitive>...</sensitive>) around the words you want to hide. Only the most recent message submitted will be taken into account (no history is retained)."),
27
+ gr.Slider(minimum=1, maximum=128, value=32, step=1, label="Max new tokens"),
28
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
 
 
 
 
 
 
 
29
  ],
30
  )
31
 
models/modeling_llamask.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ from torch import nn
25
+
26
+ from transformers.cache_utils import Cache
27
+ from transformers.modeling_outputs import CausalLMOutputWithPast
28
+ from transformers.models.llama import LlamaForCausalLM
29
+
30
+ class LlamaskForCausalLM(LlamaForCausalLM):
31
+ def __init__(self, config):
32
+ super().__init__(config)
33
+ self.special_tokens = nn.Embedding(2, config.hidden_size) # 0 -> mask encoding, 1 -> buffer token
34
+ self.post_init()
35
+
36
+ def generate(
37
+ self,
38
+ input_ids: torch.LongTensor = None,
39
+ attention_mask: Optional[torch.Tensor] = None,
40
+ max_tokens: int=32,
41
+ temperature: float=1.0,
42
+ ):
43
+ eos_token_tensor = torch.tensor(self.config.eos_token_id, device=input_ids.device)
44
+ for _ in range(max_tokens):
45
+ outputs = self.forward(input_ids=input_ids, attention_mask=attention_mask)
46
+ logits = outputs['logits'][:,-1,:]/temperature
47
+
48
+ probs = torch.nn.functional.softmax(logits, dim=-1)
49
+ next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
50
+
51
+ batch_size, seq_len, _ = attention_mask.shape
52
+ expanded_mask = torch.zeros(batch_size, seq_len + 1, seq_len + 1, dtype=attention_mask.dtype, device=attention_mask.device)
53
+
54
+ # Step 1: Copy the existing attention mask (top-left block of the expanded mask)
55
+ expanded_mask[:, :seq_len, :seq_len] = attention_mask
56
+
57
+ # Step 2: Copy the last row of the original attention mask into the new row (excluding the last position)
58
+ expanded_mask[:, seq_len, :seq_len] = attention_mask[:, -1, :]
59
+
60
+ # Step 3: Set the diagonal of the new token to attend to all previous tokens by setting the new last element to 1
61
+ expanded_mask[:, seq_len, seq_len] = 1
62
+
63
+ next_tokens = next_tokens[:, None]
64
+
65
+ input_ids = torch.cat([input_ids, next_tokens], dim=-1)
66
+ attention_mask = expanded_mask
67
+ if torch.all(torch.any(next_tokens==eos_token_tensor, dim=1)):
68
+ break
69
+ return input_ids
70
+
71
+ def forward(
72
+ self,
73
+ input_ids: torch.LongTensor = None,
74
+ num_buffer_token: Optional[int] = 0,
75
+ attention_mask: Optional[torch.Tensor] = None,
76
+ position_ids: Optional[torch.LongTensor] = None,
77
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
78
+ inputs_embeds: Optional[torch.FloatTensor] = None,
79
+ labels: Optional[torch.LongTensor] = None,
80
+ use_cache: Optional[bool] = None,
81
+ output_attentions: Optional[bool] = None,
82
+ output_hidden_states: Optional[bool] = None,
83
+ return_dict: Optional[bool] = None,
84
+ cache_position: Optional[torch.LongTensor] = None
85
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
86
+ batch_size = input_ids.shape[0]
87
+
88
+ # print("BEWARE PRIVACY TAG DISABLE")
89
+ # privacy_tag = self.special_tokens(torch.tensor([0], device=input_ids.device))
90
+ # buffer_token = self.special_tokens(torch.tensor([0], device=input_ids.device)).unsqueeze(0)
91
+
92
+ inputs_embeds = self.model.embed_tokens(input_ids)
93
+ # buffer_tokens = buffer_token.repeat(batch_size, num_buffer_token, 1)
94
+ # inputs_embeds = torch.cat([inputs_embeds, buffer_tokens], dim=1)
95
+
96
+ # inputs_embeds[attention_mask[:,-1,:]==0] = inputs_embeds[attention_mask[:,-1,:]==0] + privacy_tag
97
+
98
+ attention_mask = attention_mask.unsqueeze(1)
99
+ attention_mask = attention_mask.to(inputs_embeds.dtype)
100
+ attention_mask = attention_mask.masked_fill(attention_mask == 0, -1e9)
101
+ attention_mask = attention_mask.masked_fill(attention_mask == 1, float(0.0))
102
+
103
+ outputs = super().forward(
104
+ input_ids=None,
105
+ attention_mask=attention_mask,
106
+ position_ids=position_ids,
107
+ past_key_values=past_key_values,
108
+ inputs_embeds=inputs_embeds,
109
+ labels=labels,
110
+ use_cache=use_cache,
111
+ output_attentions=output_attentions,
112
+ output_hidden_states=output_hidden_states,
113
+ return_dict=return_dict,
114
+ cache_position=cache_position,
115
+ )
116
+ return outputs
117
+
models/tokenizer_utils.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List
2
+
3
+ from transformers import AutoTokenizer
4
+ import torch
5
+
6
+ def prepare_tokenizer(tokenizer: AutoTokenizer, token_beg="<sensitive>", token_end="</sensitive>"):
7
+ """
8
+ Add privacy special tokens
9
+ """
10
+ tokenizer.pad_token = tokenizer.eos_token
11
+ tokenizer.add_special_tokens({"additional_special_tokens": [token_beg, token_end]})
12
+ tokenizer.sensitive_beg_id = tokenizer.encode(token_beg, add_special_tokens=False)[0]
13
+ tokenizer.sensitive_end_id = tokenizer.encode(token_end, add_special_tokens=False)[0]
14
+
15
+ def generate_custom_mask(tokenizer: AutoTokenizer, prompts: List[str], device='cpu', padding_side='left'):
16
+ """
17
+ Given a prepared tokenizer (i.e. with privacy special tokens), a list of prompts with privacy special tokens,
18
+ tokenize and generate custom masks for a privacy-compatible transformer.
19
+ """
20
+ input_ids = tokenizer(prompts)['input_ids']
21
+ return generate_custom_mask_input_ids(tokenizer, input_ids, device=device, padding_side='left')[0]
22
+
23
+ def generate_custom_mask_input_ids(tokenizer: AutoTokenizer, input_ids, device='cpu', padding_side="right"):
24
+ """
25
+ Given a prepared tokenizer (i.e. with privacy special tokens), a list of prompts with privacy special tokens,
26
+ tokenize and generate custom masks for a privacy-compatible transformer.
27
+ """
28
+ new_input_ids, new_attention_masks, seq_len_list = [], [], []
29
+ max_len = 0
30
+ batch_size = len(input_ids)
31
+ for input_id in input_ids:
32
+ trigger_privacy = False
33
+ new_input_id = []
34
+ mask_pos_list = []
35
+ idx = 0
36
+ for token_id in input_id:
37
+ if token_id == tokenizer.sensitive_beg_id:
38
+ trigger_privacy = True
39
+ elif token_id == tokenizer.sensitive_end_id:
40
+ trigger_privacy = False
41
+ else:
42
+ new_input_id.append(token_id)
43
+ if trigger_privacy:
44
+ mask_pos_list.append(idx)
45
+ idx += 1
46
+ seq_len = len(new_input_id)
47
+ seq_len_list.append(seq_len)
48
+
49
+ attention_mask = torch.tril(torch.ones((seq_len, seq_len)))
50
+
51
+ for idx in mask_pos_list:
52
+ # The last token can access everything.
53
+ attention_mask[idx+1:-1, idx] = 0
54
+ attention_mask[idx,:idx] = 1
55
+ new_attention_masks.append(attention_mask)
56
+ new_input_ids.append(new_input_id)
57
+
58
+ max_len = max(max_len, seq_len)
59
+
60
+ new_full_attention_mask = torch.zeros((batch_size, max_len))
61
+ for batch, seq_len in enumerate(seq_len_list):
62
+ if padding_side == 'left':
63
+ new_full_attention_mask[batch, max_len-seq_len:] = 1
64
+ else:
65
+ new_full_attention_mask[batch, :seq_len] = 1
66
+
67
+ for idx, (input_ids, attention_mask) in enumerate(zip(new_input_ids, new_attention_masks)):
68
+ current_len = len(input_ids)
69
+ new_attention_mask = torch.zeros((max_len, max_len), dtype=torch.long)
70
+ if padding_side == 'left':
71
+ input_ids = [tokenizer.pad_token_id]*(max_len - current_len) + input_ids
72
+ else:
73
+ input_ids = input_ids + [tokenizer.pad_token_id]*(max_len - current_len)
74
+
75
+ if padding_side == 'left':
76
+ new_attention_mask[max_len-current_len:, max_len-current_len:] = attention_mask
77
+ else:
78
+ new_attention_mask[:current_len,:current_len] = attention_mask
79
+ new_input_ids[idx] = torch.tensor(input_ids).unsqueeze(0)
80
+ new_attention_masks[idx] = new_attention_mask.unsqueeze(0)
81
+ input_id = torch.cat(new_input_ids, dim=0)
82
+ attention_mask = torch.cat(new_attention_masks, dim=0)
83
+ return {'input_ids': input_id.to(device), 'attention_mask': attention_mask.to(device)}, new_full_attention_mask.to(device)