Spaces:
Sleeping
Sleeping
double output
Browse files
app.py
CHANGED
@@ -16,6 +16,7 @@ device = 'cuda'
|
|
16 |
|
17 |
model = LlamaskForCausalLM.from_pretrained(model_id, torch_dtype= torch.bfloat16, token=access_token)
|
18 |
model = model.to(device)
|
|
|
19 |
tokenizer = AutoTokenizer.from_pretrained(model_id, padding_side="left")
|
20 |
|
21 |
prepare_tokenizer(tokenizer)
|
@@ -27,6 +28,7 @@ def respond(
|
|
27 |
max_tokens,
|
28 |
temperature,
|
29 |
):
|
|
|
30 |
prompt = f"""<|start_header_id|>system<|end_header_id|>
|
31 |
|
32 |
You are a helpful assistant.<|eot_id|><|start_header_id|>user<|end_header_id|>
|
@@ -34,12 +36,18 @@ def respond(
|
|
34 |
<|eot_id|><|start_header_id|>assistant<|end_header_id|>
|
35 |
"""
|
36 |
model_inputs = generate_custom_mask(tokenizer, [prompt], device)
|
37 |
-
|
|
|
38 |
outputs = model.generate(temperature=0.7, max_tokens=32, **model_inputs)
|
39 |
outputs = outputs[:, model_inputs['input_ids'].shape[1]:]
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
return
|
43 |
|
44 |
"""
|
45 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
|
|
16 |
|
17 |
model = LlamaskForCausalLM.from_pretrained(model_id, torch_dtype= torch.bfloat16, token=access_token)
|
18 |
model = model.to(device)
|
19 |
+
model.load_adapter('theostos/zLlamask', adapter_name="zzlamask")
|
20 |
tokenizer = AutoTokenizer.from_pretrained(model_id, padding_side="left")
|
21 |
|
22 |
prepare_tokenizer(tokenizer)
|
|
|
28 |
max_tokens,
|
29 |
temperature,
|
30 |
):
|
31 |
+
|
32 |
prompt = f"""<|start_header_id|>system<|end_header_id|>
|
33 |
|
34 |
You are a helpful assistant.<|eot_id|><|start_header_id|>user<|end_header_id|>
|
|
|
36 |
<|eot_id|><|start_header_id|>assistant<|end_header_id|>
|
37 |
"""
|
38 |
model_inputs = generate_custom_mask(tokenizer, [prompt], device)
|
39 |
+
|
40 |
+
model.disable_adapters()
|
41 |
outputs = model.generate(temperature=0.7, max_tokens=32, **model_inputs)
|
42 |
outputs = outputs[:, model_inputs['input_ids'].shape[1]:]
|
43 |
+
result_no_ft = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
44 |
+
|
45 |
+
model.enable_adapters()
|
46 |
+
outputs = model.generate(temperature=0.7, max_tokens=32, **model_inputs)
|
47 |
+
outputs = outputs[:, model_inputs['input_ids'].shape[1]:]
|
48 |
+
result_ft = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
49 |
|
50 |
+
return f"Without finetuning:\n{result_no_ft}\n\nWith finetuning:\n{result_ft}"
|
51 |
|
52 |
"""
|
53 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|