Spaces:
Sleeping
Sleeping
| import os | |
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| import torch | |
| from transformers import AutoTokenizer | |
| from model.modeling_llamask import LlamaskForCausalLM | |
| from model.tokenizer_utils import generate_custom_mask, prepare_tokenizer | |
| access_token = os.getenv("HF_TOKEN") | |
| model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct" | |
| device = 'cuda' | |
| model = LlamaskForCausalLM.from_pretrained(model_id, torch_dtype= torch.bfloat16, token=access_token) | |
| model = model.to(device) | |
| model.load_adapter('theostos/zLlamask', adapter_name="zzlamask") | |
| tokenizer = AutoTokenizer.from_pretrained(model_id, padding_side="left") | |
| prepare_tokenizer(tokenizer) | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| max_tokens, | |
| temperature, | |
| ): | |
| prompt = f"""<|start_header_id|>system<|end_header_id|> | |
| You are a helpful assistant.<|eot_id|><|start_header_id|>user<|end_header_id|> | |
| {message} | |
| <|eot_id|><|start_header_id|>assistant<|end_header_id|> | |
| """ | |
| model_inputs = generate_custom_mask(tokenizer, [prompt], device) | |
| model.disable_adapters() | |
| outputs = model.generate(temperature=0.7, max_tokens=32, **model_inputs) | |
| outputs = outputs[:, model_inputs['input_ids'].shape[1]:] | |
| result_no_ft = tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
| model.enable_adapters() | |
| outputs = model.generate(temperature=0.7, max_tokens=32, **model_inputs) | |
| outputs = outputs[:, model_inputs['input_ids'].shape[1]:] | |
| result_ft = tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
| return f"Without finetuning:\n{result_no_ft}\n\nWith finetuning:\n{result_ft}" | |
| """ | |
| For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
| """ | |
| demo = gr.ChatInterface( | |
| respond, | |
| title="zLlamask", | |
| description="Please enter your message. Add privacy tags ( \<sensitive\>...\<\/sensitive\>) around the words you want to hide. Only the most recent message submitted will be taken into account (no history is retained)", | |
| chatbot=gr.Chatbot(placeholder='Please enter your message. Add privacy tags ( \<sensitive\>...\<\/sensitive\>) around the words you want to hide. Only the most recent message submitted will be taken into account (no history is retained)\n\n\nExample: What is the \<sensitive\>capital\</sensitive\> of \<sensitive\>Tonga\</sensitive\>?'), | |
| additional_inputs=[ | |
| gr.Slider(minimum=1, maximum=128, value=32, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"), | |
| ] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |