Zamanonymize3 / app.py
kcelia's picture
chore: add encryption
cf6aebf unverified
raw
history blame
15.6 kB
"""A Gradio app for anonymizing text data using FHE."""
import os
import re
from typing import Dict, List
import numpy
import gradio as gr
import pandas as pd
from fhe_anonymizer import FHEAnonymizer
from openai import OpenAI
from utils_demo import *
from concrete.ml.deployment import FHEModelClient
ORIGINAL_DOCUMENT = read_txt(ORIGINAL_FILE_PATH).split("\n\n")
ANONYMIZED_DOCUMENT = read_txt(ANONYMIZED_FILE_PATH)
MAPPING_SENTENCES = read_pickle(MAPPING_SENTENCES_PATH)
subprocess.Popen(["uvicorn", "server:app"], cwd=CURRENT_DIR)
time.sleep(3)
clean_directory()
anonymizer = FHEAnonymizer()
client = OpenAI(api_key=os.environ.get("openaikey"))
# Generate a random user ID
user_id = numpy.random.randint(0, 2**32)
print(f"Your user ID is: {user_id}....")
def select_static_sentences_fn(selected_sentences: List):
selected_sentences = [MAPPING_SENTENCES[sentence] for sentence in selected_sentences]
anonymized_selected_sentence = sorted(selected_sentences, key=lambda x: x[0])
anonymized_selected_sentence = [sentence for _, sentence in anonymized_selected_sentence]
return {anonymized_doc_box: gr.update(value="\n\n".join(anonymized_selected_sentence))}
def key_gen_fn() -> Dict:
"""Generate keys for a given user.
Returns:
dict: A dictionary containing the generated keys and related information.
"""
print("Step 1: Key Generation:")
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}")
client.load()
# Creates the private and evaluation keys on the client side
client.generate_private_and_evaluation_keys()
# Get the serialized evaluation keys
serialized_evaluation_keys = client.get_serialized_evaluation_keys()
assert isinstance(serialized_evaluation_keys, bytes)
# Save the evaluation key
evaluation_key_path = KEYS_DIR / f"{user_id}/evaluation_key"
with evaluation_key_path.open("wb") as f:
f.write(serialized_evaluation_keys)
# anonymizer.generate_key()
if not evaluation_key_path.is_file():
error_message = (
f"Error Encountered While generating the evaluation {evaluation_key_path.is_file()=}"
)
print(error_message)
return {gen_key_btn: gr.update(value=error_message)}
else:
return {gen_key_btn: gr.update(value="Keys have been generated ✅")}
def encrypt_query_fn(query):
print(f"Step 2 Query encryption: {query=}")
evaluation_key_path = KEYS_DIR / f"{user_id}/evaluation_key"
if not evaluation_key_path.is_file():
error_message = "Error ❌: Please generate the key first!"
return {output_encrypted_box: gr.update(value=error_message)}
if is_user_query_valid(query):
error_msg = (
"Unable to process ❌: The request exceeds the length limit or falls "
"outside the scope of this document. Please refine your query."
)
print(error_msg)
return {query_box: gr.update(value=error_msg)}
# Retrieve the client API
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}")
client.load()
# Pattern to identify words and non-words (including punctuation, spaces, etc.)
tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", query)
encrypted_tokens = []
for token in tokens:
if bool(re.match(r"^\s+$", token)):
continue
# Directly append non-word tokens or whitespace to processed_tokens
# Prediction for each word
emb_x = get_batch_text_representation([token], EMBEDDINGS_MODEL, TOKENIZER)
encrypted_x = client.quantize_encrypt_serialize(emb_x)
assert isinstance(encrypted_x, bytes)
encrypted_tokens.append(encrypted_x)
write_pickle(KEYS_DIR / f"{user_id}/encrypted_input", encrypted_tokens)
#anonymizer.encrypt_query(query)
encrypted_quant_tokens_hex = [token.hex()[500:510] for token in encrypted_tokens]
return {output_encrypted_box: gr.update(value=" ".join(encrypted_quant_tokens_hex))}
def run_fhe_fn(query_box):
evaluation_key_path = KEYS_DIR / "evaluation_key"
if not evaluation_key_path.is_file():
error_message = "Error ❌: Please generate the key first!"
return {anonymized_text_output: gr.update(value=error_message)}
encryted_query_path = KEYS_DIR / "encrypted_quantized_query"
if not encryted_query_path.is_file():
error_message = "Error ❌: Please encrypt your query first!"
return {anonymized_text_output: gr.update(value=error_message)}
anonymizer.run_server_and_decrypt_output(query_box)
anonymized_text = read_pickle(KEYS_DIR / "reconstructed_sentence")
# Removing Spaces Before Punctuation:
anonymized_text = re.sub(r"\s([,.!?;:])", r"\1", anonymized_text)
identified_words_with_prob = read_pickle(KEYS_DIR / "identified_words_with_prob")
# Convert the list of identified words and probabilities into a DataFrame
if identified_words_with_prob:
identified_df = pd.DataFrame(
identified_words_with_prob, columns=["Identified Words", "Probability"]
)
else:
identified_df = pd.DataFrame(columns=["Identified Words", "Probability"])
return anonymized_text, identified_df
def query_chatgpt_fn(anonymized_query, anonymized_document):
evaluation_key_path = KEYS_DIR / "evaluation_key"
if not evaluation_key_path.is_file():
error_message = "Error ❌: Please generate the key first!"
return {anonymized_text_output: gr.update(value=error_message)}
encryted_query_path = KEYS_DIR / "encrypted_quantized_query"
if not encryted_query_path.is_file():
error_message = "Error ❌: Please encrypt your query first!"
return {anonymized_text_output: gr.update(value=error_message)}
decrypted_query_path = KEYS_DIR / "reconstructed_sentence"
if not decrypted_query_path.is_file():
error_message = "Error ❌: Please run the FHE computation first!"
return {anonymized_text_output: gr.update(value=error_message)}
prompt = read_txt(PROMPT_PATH)
# Prepare prompt
full_prompt = prompt + "\n"
query = (
"Document content:\n```\n"
+ anonymized_document
+ "\n\n```"
+ "Query:\n```\n"
+ anonymized_query
+ "\n```"
)
print(full_prompt)
completion = client.chat.completions.create(
model="gpt-4-1106-preview", # Replace with "gpt-4" if available
messages=[
{"role": "system", "content": prompt},
{"role": "user", "content": query},
],
)
anonymized_response = completion.choices[0].message.content
uuid_map = read_json(MAPPING_UUID_PATH)
inverse_uuid_map = {
v: k for k, v in uuid_map.items()
} # TODO load the inverse mapping from disk for efficiency
# Pattern to identify words and non-words (including punctuation, spaces, etc.)
tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", anonymized_response)
processed_tokens = []
for token in tokens:
# Directly append non-word tokens or whitespace to processed_tokens
if not token.strip() or not re.match(r"\w+", token):
processed_tokens.append(token)
continue
if token in inverse_uuid_map:
processed_tokens.append(inverse_uuid_map[token])
else:
processed_tokens.append(token)
deanonymized_response = "".join(processed_tokens)
return anonymized_response, deanonymized_response
demo = gr.Blocks(css=".markdown-body { font-size: 18px; }")
with demo:
gr.Markdown(
"""
<p align="center">
<img width=200 src="file/images/logos/zama.jpg">
</p>
<h1 style="text-align: center;">Encrypted Anonymization Using Fully Homomorphic Encryption</h1>
<p align="center">
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/github.png">Concrete-ML</a>
<a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/documentation.png">Documentation</a>
<a href=" https://community.zama.ai/c/concrete-ml/8"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/community.png">Community</a>
<a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/x.png">@zama_fhe</a>
</p>
"""
)
# gr.Markdown(
# """
# <p align="center">
# <img width="15%" height="15%" src="./encrypted_anonymization_diagram.jpg">
# </p>
# """
# )
with gr.Accordion("What is encrypted anonymization?", open=False):
gr.Markdown(
"""
Anonymization is the process of removing personally identifiable information (PII)
from data to protect individual privacy.
To resolve trust issues when deploying anonymization as a cloud service, Fully Homomorphic
Encryption (FHE) can be used to preserve the privacy of the original data using
encryption.
The data remains encrypted throughout the anonymization process, eliminating the need for
third-party access to the raw data. Once the data is anonymized, it can safely be sent
to GenAI services such as ChatGPT.
"""
)
########################## Key Gen Part ##########################
gr.Markdown(
"## Step 1: Key generation\n\n"
"""In FHE schemes, two sets of keys are generated. First, the secret keys which are used for
encrypting and decrypting data owned by the client. Second, the evaluation keys that allow
a server to blindly process the encrypted data.
"""
)
gen_key_btn = gr.Button("Generate the secret and evaluation keys")
gen_key_btn.click(
key_gen_fn,
inputs=[],
outputs=[gen_key_btn],
)
########################## Main document Part ##########################
gr.Markdown("## Step 2: Private document")
with gr.Row():
with gr.Column():
gr.Markdown("**Original document:**")
gr.Markdown(
"""This document was retrieved from the [Microsoft Presidio](https://huggingface.co/spaces/presidio/presidio_demo) demo.\n\n
You can select and deselect sentences to customize the document that will be used
as the initial prompt for ChatGPT in step 5.
"""
)
with gr.Column():
gr.Markdown("**Anonymized document:**")
gr.Markdown(
"""You can see below the anonymized text, replaced with hexademical strings, that
will be sent to ChatGPT.
ChatGPT will then be able to answer any queries about the document.
"""
)
with gr.Row():
with gr.Column():
original_sentences_box = gr.CheckboxGroup(
ORIGINAL_DOCUMENT, value=ORIGINAL_DOCUMENT, show_label=False,
)
with gr.Column():
anonymized_doc_box = gr.Textbox(show_label=False,
value=ANONYMIZED_DOCUMENT, interactive=False, lines=11
)
original_sentences_box.change(
fn=select_static_sentences_fn,
inputs=[original_sentences_box],
outputs=[anonymized_doc_box],
)
########################## User Query Part ##########################
gr.Markdown("<hr />")
gr.Markdown("## Step 3: Private query")
gr.Markdown(
"""Now, you can formulate a query. Please choose from the predefined options in
“Queries examples” or craft a custom question in the “Customized query” text box.
Remain concise and relevant to the context. Any off-topic query will not be processed.
"""
)
with gr.Row():
with gr.Column(scale=5):
with gr.Column(scale=5):
default_query_box = gr.Dropdown(
list(DEFAULT_QUERIES.values()), label="Queries examples:"
)
gr.Markdown("Or")
query_box = gr.Textbox(
value="Who lives in Maine?", label="Customized query:", interactive=True
)
default_query_box.change(
fn=lambda default_query_box: default_query_box,
inputs=[default_query_box],
outputs=[query_box],
)
with gr.Column(scale=1, min_width=6):
gr.HTML("<div style='height: 25px;'></div>")
gr.Markdown(
"""
<p align="center">
Encrypt the query locally with FHE
</p>
"""
)
encrypt_btn = gr.Button("Encrypt query”")
gr.HTML("<div style='height: 25px;'></div>")
with gr.Column(scale=5):
output_encrypted_box = gr.Textbox(
label="Encrypted anonymized query that will be sent to the anonymization server:", lines=8
)
encrypt_btn.click(
fn=encrypt_query_fn, inputs=[query_box], outputs=[query_box, output_encrypted_box]
)
########################## FHE processing Part ##########################
gr.Markdown("<hr />")
gr.Markdown("## Step 4: Secure anonymization with FHE")
gr.Markdown(
""" Once the client encrypts the private query locally, it will be sent to a remote server
to perform the anonymization on encrypted data. When the computation is done, the server
will return the result to the client for decryption.
"""
)
run_fhe_btn = gr.Button("Anonymize with FHE")
anonymized_text_output = gr.Textbox(
label="Decrypted anonymized query that will be sent to ChatGPT:", lines=1, interactive=True
)
identified_words_output = gr.Dataframe(label="Identified words:", visible=False)
run_fhe_btn.click(
run_fhe_fn,
inputs=[query_box],
outputs=[anonymized_text_output, identified_words_output],
)
########################## ChatGpt Part ##########################
gr.Markdown("<hr />")
gr.Markdown("## Spet 5: Secure your communication on ChatGPT with anonymized queries")
gr.Markdown(
"""After securely anonymizing the query with FHE,
you can forward it to ChatGPT without having any concern about information leakage."""
)
chatgpt_button = gr.Button("Query ChatGPT")
with gr.Row():
chatgpt_response_anonymized = gr.Textbox(label="ChatGPT's anonymized response:", lines=13)
chatgpt_response_deanonymized = gr.Textbox(
label="ChatGPT's non-anonymized response:", lines=13
)
chatgpt_button.click(
query_chatgpt_fn,
inputs=[anonymized_text_output, anonymized_doc_box],
outputs=[chatgpt_response_anonymized, chatgpt_response_deanonymized],
)
gr.Markdown(
"""**Please note**: As this space is intended solely for demonstration purposes, some
private information may be missed during by the anonymization algorithm. Please validate the
following query before sending it to ChatGPT."""
)
# Launch the app
demo.launch(share=False)