Zamanonymize3 / anonymize_file_clear.py
kcelia's picture
chore: update the space with layout
174cd37 unverified
raw
history blame
3.77 kB
import argparse
import re
import uuid
from transformers import AutoModel, AutoTokenizer
from concrete.ml.common.serialization.loaders import load
from utils_demo import *
def load_models():
# Load the tokenizer and the embedding model
try:
tokenizer = AutoTokenizer.from_pretrained("obi/deid_roberta_i2b2")
embeddings_model = AutoModel.from_pretrained("obi/deid_roberta_i2b2")
except:
print("Error while loading Roberta")
# Load the CML trained model
with open(LOGREG_MODEL_PATH, "r") as model_file:
cml_ner_model = load(file=model_file)
return embeddings_model, tokenizer, cml_ner_model
def anonymize_with_cml(text, embeddings_model, tokenizer, cml_ner_model):
token_pattern = r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)"
tokens = re.findall(token_pattern, text)
uuid_map = {}
processed_tokens = []
for token in tokens:
if token.strip() and re.match(r"\w+", token): # If the token is a word
x = get_batch_text_representation([token], embeddings_model, tokenizer)
prediction_proba = cml_ner_model.predict_proba(x, fhe="disable")
probability = prediction_proba[0][1]
prediction = probability >= 0.77
if prediction:
if token not in uuid_map:
uuid_map[token] = str(uuid.uuid4())[:8]
processed_tokens.append(uuid_map[token])
else:
processed_tokens.append(token)
else:
processed_tokens.append(token) # Preserve punctuation and spaces as is
anonymized_text = "".join(processed_tokens)
return anonymized_text, uuid_map
def anonymize_text(text, verbose=False, save=False):
# Load models
if verbose:
print("Loading models..")
embeddings_model, tokenizer, cml_ner_model = load_models()
if verbose:
print(f"\nText to process:--------------------\n{text}\n--------------------\n")
# Save the original text to its specified file
if save:
write_txt(ORIGINAL_FILE_PATH, text)
# Anonymize the text
anonymized_text, uuid_map = anonymize_with_cml(text, embeddings_model, tokenizer, cml_ner_model)
# Save the anonymized text to its specified file
if save:
mapping = {o: (i, a) for i, (o, a) in enumerate(zip(text.split("\n\n"), anonymized_text.split("\n\n")))}
write_txt(ANONYMIZED_FILE_PATH, anonymized_text)
write_pickle(MAPPING_SENTENCES_PATH, mapping)
if verbose:
print(f"\nAnonymized text:--------------------\n{anonymized_text}\n--------------------\n")
# Save the UUID mapping to a JSON file
if save:
write_json(MAPPING_UUID_PATH, uuid_map)
if verbose and save:
print(f"Original text saved to :{ORIGINAL_FILE_PATH}")
print(f"Anonymized text saved to :{ANONYMIZED_FILE_PATH}")
print(f"UUID mapping saved to :{MAPPING_UUID_PATH}")
print(f"Sentence mapping saved to :{MAPPING_SENTENCES_PATH}")
return anonymized_text
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Anonymize named entities in a text file and save the mapping to a JSON file."
)
parser.add_argument(
"--file_path",
type=str,
default="files/original_document.txt",
help="The path to the file to be processed.",
)
parser.add_argument(
"--verbose",
type=bool,
default=True,
help="This provides additional details about the program's execution.",
)
parser.add_argument("--save", type=bool, default=True, help="Save the files.")
args = parser.parse_args()
text = read_txt(args.file_path)
anonymize_text(text, verbose=args.verbose, save=args.save)