Spaces:
Sleeping
Sleeping
"""Server that will listen for GET and POST requests from the client.""" | |
import base64 | |
import time | |
from typing import List | |
import numpy | |
from fastapi import FastAPI, File, Form, UploadFile | |
from fastapi.responses import JSONResponse | |
from utils_demo import * | |
from utils_demo import SERVER_DIR | |
from concrete.ml.deployment import FHEModelServer | |
# Load the FHE server | |
FHE_SERVER = FHEModelServer(DEPLOYMENT_DIR) | |
# Initialize an instance of FastAPI | |
app = FastAPI() | |
# Define the default route | |
def root(): | |
""" | |
Root endpoint of the health prediction API. | |
Returns: | |
dict: The welcome message. | |
""" | |
return {"message": "Welcome to your encrypted anonymization use-case with FHE!"} | |
def send_input( | |
user_id: str = Form(), | |
files: List[UploadFile] = File(), | |
): | |
"""Send the inputs to the server.""" | |
# Save the files using the above paths | |
write_bytes(SERVER_DIR / f"{user_id}_valuation_key", files[0].file.read()) | |
write_bytes(SERVER_DIR / f"{user_id}_encrypted_input", files[1].file.read()) | |
write_bytes(SERVER_DIR / f"{user_id}_encrypted_len_input", files[2].file.read()) | |
def run_fhe( | |
user_id: str = Form(), | |
): | |
"""Inference in FHE.""" | |
evaluation_key_path = SERVER_DIR / f"{user_id}_valuation_key" | |
encrypted_input_path = SERVER_DIR / f"{user_id}_encrypted_input" | |
encrypted_input_len_path = SERVER_DIR / f"{user_id}_encrypted_len_input" | |
# Read the files (Evaluation key + Encrypted symptoms) using the above paths | |
with encrypted_input_path.open("rb") as encrypted_output_file, evaluation_key_path.open( | |
"rb" | |
) as evaluation_key_file, encrypted_input_len_path.open("rb") as lenght: | |
evaluation_key = evaluation_key_file.read() | |
encrypted_tokens = encrypted_output_file.read() | |
length = int.from_bytes(lenght.read(), "big") | |
timing, encrypted_output = [], [] | |
for i in range(0, len(encrypted_tokens), length): | |
enc_x = encrypted_tokens[i : i + length] | |
start_time = time.time() | |
enc_y = FHE_SERVER.run(enc_x, evaluation_key) | |
timing.append(round(time.time() - start_time, 2)) | |
encrypted_output.append(enc_y) | |
# Write the files | |
write_bytes(SERVER_DIR / f"{user_id}_encrypted_output", b"".join(encrypted_output)) | |
write_bytes( | |
SERVER_DIR / f"{user_id}_encrypted_output_len", len(encrypted_output[0]).to_bytes(10, "big") | |
) | |
return JSONResponse(content=numpy.mean(timing)) | |
def get_output(user_id: str = Form()): | |
"""Retrieve the encrypted output from the server.""" | |
# Path where the encrypted output is saved | |
encrypted_output_path = SERVER_DIR / f"{user_id}_encrypted_output" | |
encrypted_output_len_path = SERVER_DIR / f"{user_id}_encrypted_output_len" | |
# Read the file using the above path | |
with encrypted_output_path.open("rb") as f: | |
encrypted_output = f.read() | |
# Read the file using the above path | |
with encrypted_output_len_path.open("rb") as f: | |
length = f.read() | |
time.sleep(1) | |
# Encode the binary data to a format suitable for JSON serialization | |
content = { | |
"encrypted_output": base64.b64encode(encrypted_output).decode("utf-8"), | |
"length": base64.b64encode(length).decode("utf-8"), | |
} | |
# Send the encrypted output | |
return JSONResponse(content) | |