Spaces:
Sleeping
Sleeping
init
Browse files- .gitignore +1 -0
- app.py +44 -0
- client.py +31 -0
- data/heart.xls +304 -0
- heart_disease_dt_model.pkl +0 -0
- requirements.txt +7 -0
- server.py +149 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
venv
|
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import joblib # for loading the saved model
|
4 |
+
from sklearn.tree import DecisionTreeClassifier #using sklearn decisiontreeclassifier
|
5 |
+
|
6 |
+
#from concrete.ml.sklearn.xgb import DecisionTreeClassifier
|
7 |
+
|
8 |
+
# Load the saved model
|
9 |
+
dt = joblib.load('heart_disease_dt_model.pkl')
|
10 |
+
|
11 |
+
# Load the dataset and select the relevant features
|
12 |
+
data = pd.read_csv('data/heart.xls')
|
13 |
+
|
14 |
+
# Perform the correlation analysis
|
15 |
+
data_corr = data.corr()
|
16 |
+
|
17 |
+
# Select features based on correlation with 'output'
|
18 |
+
feature_value = np.array(data_corr['output'])
|
19 |
+
for i in range(len(feature_value)):
|
20 |
+
if feature_value[i] < 0:
|
21 |
+
feature_value[i] = -feature_value[i]
|
22 |
+
|
23 |
+
features_corr = pd.DataFrame(feature_value, index=data_corr['output'].index, columns=['correlation'])
|
24 |
+
feature_sorted = features_corr.sort_values(by=['correlation'], ascending=False)
|
25 |
+
feature_selected = feature_sorted.index
|
26 |
+
|
27 |
+
# Clean the data by selecting the most correlated features
|
28 |
+
clean_data = data[feature_selected]
|
29 |
+
|
30 |
+
# Extract the first row of feature data for prediction (excluding 'output' column)
|
31 |
+
sample_data = clean_data.iloc[0, 1:].values.reshape(1, -1) # Reshape to 2D array for model input
|
32 |
+
|
33 |
+
#fhe_circuit =
|
34 |
+
# Make prediction on the first row of data
|
35 |
+
#prediction = dt.predict(sample_data, fhe="execute")
|
36 |
+
prediction = dt.predict(sample_data) # clair
|
37 |
+
|
38 |
+
# Display the prediction result
|
39 |
+
print(prediction)
|
40 |
+
if prediction == 1:
|
41 |
+
print("Prediction: The patient is likely to have heart disease.")
|
42 |
+
else:
|
43 |
+
print("Prediction: The patient is unlikely to have heart disease.")
|
44 |
+
|
client.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from concrete.ml.deployment import FHEModelDev, FHEModelClient, FHEModelServer
|
2 |
+
|
3 |
+
# Setup the client
|
4 |
+
client = FHEModelClient(path_dir=fhe_directory, key_dir="/tmp/keys_client")
|
5 |
+
serialized_evaluation_keys = client.get_serialized_evaluation_keys()
|
6 |
+
|
7 |
+
|
8 |
+
# Load the dataset and select the relevant features
|
9 |
+
data = pd.read_csv('data/heart.xls')
|
10 |
+
|
11 |
+
# Perform the correlation analysis
|
12 |
+
data_corr = data.corr()
|
13 |
+
|
14 |
+
# Select features based on correlation with 'output'
|
15 |
+
feature_value = np.array(data_corr['output'])
|
16 |
+
for i in range(len(feature_value)):
|
17 |
+
if feature_value[i] < 0:
|
18 |
+
feature_value[i] = -feature_value[i]
|
19 |
+
|
20 |
+
features_corr = pd.DataFrame(feature_value, index=data_corr['output'].index, columns=['correlation'])
|
21 |
+
feature_sorted = features_corr.sort_values(by=['correlation'], ascending=False)
|
22 |
+
feature_selected = feature_sorted.index
|
23 |
+
|
24 |
+
# Clean the data by selecting the most correlated features
|
25 |
+
clean_data = data[feature_selected]
|
26 |
+
|
27 |
+
# Extract the first row of feature data for prediction (excluding 'output' column)
|
28 |
+
sample_data = clean_data.iloc[0, 1:].values.reshape(1, -1) # Reshape to 2D array for model input
|
29 |
+
|
30 |
+
encrypted_data = client.quantize_encrypt_serialize(sample_data)
|
31 |
+
|
data/heart.xls
ADDED
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
age,sex,cp,trtbps,chol,fbs,restecg,thalachh,exng,oldpeak,slp,caa,thall,output
|
2 |
+
63,1,3,145,233,1,0,150,0,2.3,0,0,1,1
|
3 |
+
37,1,2,130,250,0,1,187,0,3.5,0,0,2,1
|
4 |
+
41,0,1,130,204,0,0,172,0,1.4,2,0,2,1
|
5 |
+
56,1,1,120,236,0,1,178,0,0.8,2,0,2,1
|
6 |
+
57,0,0,120,354,0,1,163,1,0.6,2,0,2,1
|
7 |
+
57,1,0,140,192,0,1,148,0,0.4,1,0,1,1
|
8 |
+
56,0,1,140,294,0,0,153,0,1.3,1,0,2,1
|
9 |
+
44,1,1,120,263,0,1,173,0,0,2,0,3,1
|
10 |
+
52,1,2,172,199,1,1,162,0,0.5,2,0,3,1
|
11 |
+
57,1,2,150,168,0,1,174,0,1.6,2,0,2,1
|
12 |
+
54,1,0,140,239,0,1,160,0,1.2,2,0,2,1
|
13 |
+
48,0,2,130,275,0,1,139,0,0.2,2,0,2,1
|
14 |
+
49,1,1,130,266,0,1,171,0,0.6,2,0,2,1
|
15 |
+
64,1,3,110,211,0,0,144,1,1.8,1,0,2,1
|
16 |
+
58,0,3,150,283,1,0,162,0,1,2,0,2,1
|
17 |
+
50,0,2,120,219,0,1,158,0,1.6,1,0,2,1
|
18 |
+
58,0,2,120,340,0,1,172,0,0,2,0,2,1
|
19 |
+
66,0,3,150,226,0,1,114,0,2.6,0,0,2,1
|
20 |
+
43,1,0,150,247,0,1,171,0,1.5,2,0,2,1
|
21 |
+
69,0,3,140,239,0,1,151,0,1.8,2,2,2,1
|
22 |
+
59,1,0,135,234,0,1,161,0,0.5,1,0,3,1
|
23 |
+
44,1,2,130,233,0,1,179,1,0.4,2,0,2,1
|
24 |
+
42,1,0,140,226,0,1,178,0,0,2,0,2,1
|
25 |
+
61,1,2,150,243,1,1,137,1,1,1,0,2,1
|
26 |
+
40,1,3,140,199,0,1,178,1,1.4,2,0,3,1
|
27 |
+
71,0,1,160,302,0,1,162,0,0.4,2,2,2,1
|
28 |
+
59,1,2,150,212,1,1,157,0,1.6,2,0,2,1
|
29 |
+
51,1,2,110,175,0,1,123,0,0.6,2,0,2,1
|
30 |
+
65,0,2,140,417,1,0,157,0,0.8,2,1,2,1
|
31 |
+
53,1,2,130,197,1,0,152,0,1.2,0,0,2,1
|
32 |
+
41,0,1,105,198,0,1,168,0,0,2,1,2,1
|
33 |
+
65,1,0,120,177,0,1,140,0,0.4,2,0,3,1
|
34 |
+
44,1,1,130,219,0,0,188,0,0,2,0,2,1
|
35 |
+
54,1,2,125,273,0,0,152,0,0.5,0,1,2,1
|
36 |
+
51,1,3,125,213,0,0,125,1,1.4,2,1,2,1
|
37 |
+
46,0,2,142,177,0,0,160,1,1.4,0,0,2,1
|
38 |
+
54,0,2,135,304,1,1,170,0,0,2,0,2,1
|
39 |
+
54,1,2,150,232,0,0,165,0,1.6,2,0,3,1
|
40 |
+
65,0,2,155,269,0,1,148,0,0.8,2,0,2,1
|
41 |
+
65,0,2,160,360,0,0,151,0,0.8,2,0,2,1
|
42 |
+
51,0,2,140,308,0,0,142,0,1.5,2,1,2,1
|
43 |
+
48,1,1,130,245,0,0,180,0,0.2,1,0,2,1
|
44 |
+
45,1,0,104,208,0,0,148,1,3,1,0,2,1
|
45 |
+
53,0,0,130,264,0,0,143,0,0.4,1,0,2,1
|
46 |
+
39,1,2,140,321,0,0,182,0,0,2,0,2,1
|
47 |
+
52,1,1,120,325,0,1,172,0,0.2,2,0,2,1
|
48 |
+
44,1,2,140,235,0,0,180,0,0,2,0,2,1
|
49 |
+
47,1,2,138,257,0,0,156,0,0,2,0,2,1
|
50 |
+
53,0,2,128,216,0,0,115,0,0,2,0,0,1
|
51 |
+
53,0,0,138,234,0,0,160,0,0,2,0,2,1
|
52 |
+
51,0,2,130,256,0,0,149,0,0.5,2,0,2,1
|
53 |
+
66,1,0,120,302,0,0,151,0,0.4,1,0,2,1
|
54 |
+
62,1,2,130,231,0,1,146,0,1.8,1,3,3,1
|
55 |
+
44,0,2,108,141,0,1,175,0,0.6,1,0,2,1
|
56 |
+
63,0,2,135,252,0,0,172,0,0,2,0,2,1
|
57 |
+
52,1,1,134,201,0,1,158,0,0.8,2,1,2,1
|
58 |
+
48,1,0,122,222,0,0,186,0,0,2,0,2,1
|
59 |
+
45,1,0,115,260,0,0,185,0,0,2,0,2,1
|
60 |
+
34,1,3,118,182,0,0,174,0,0,2,0,2,1
|
61 |
+
57,0,0,128,303,0,0,159,0,0,2,1,2,1
|
62 |
+
71,0,2,110,265,1,0,130,0,0,2,1,2,1
|
63 |
+
54,1,1,108,309,0,1,156,0,0,2,0,3,1
|
64 |
+
52,1,3,118,186,0,0,190,0,0,1,0,1,1
|
65 |
+
41,1,1,135,203,0,1,132,0,0,1,0,1,1
|
66 |
+
58,1,2,140,211,1,0,165,0,0,2,0,2,1
|
67 |
+
35,0,0,138,183,0,1,182,0,1.4,2,0,2,1
|
68 |
+
51,1,2,100,222,0,1,143,1,1.2,1,0,2,1
|
69 |
+
45,0,1,130,234,0,0,175,0,0.6,1,0,2,1
|
70 |
+
44,1,1,120,220,0,1,170,0,0,2,0,2,1
|
71 |
+
62,0,0,124,209,0,1,163,0,0,2,0,2,1
|
72 |
+
54,1,2,120,258,0,0,147,0,0.4,1,0,3,1
|
73 |
+
51,1,2,94,227,0,1,154,1,0,2,1,3,1
|
74 |
+
29,1,1,130,204,0,0,202,0,0,2,0,2,1
|
75 |
+
51,1,0,140,261,0,0,186,1,0,2,0,2,1
|
76 |
+
43,0,2,122,213,0,1,165,0,0.2,1,0,2,1
|
77 |
+
55,0,1,135,250,0,0,161,0,1.4,1,0,2,1
|
78 |
+
51,1,2,125,245,1,0,166,0,2.4,1,0,2,1
|
79 |
+
59,1,1,140,221,0,1,164,1,0,2,0,2,1
|
80 |
+
52,1,1,128,205,1,1,184,0,0,2,0,2,1
|
81 |
+
58,1,2,105,240,0,0,154,1,0.6,1,0,3,1
|
82 |
+
41,1,2,112,250,0,1,179,0,0,2,0,2,1
|
83 |
+
45,1,1,128,308,0,0,170,0,0,2,0,2,1
|
84 |
+
60,0,2,102,318,0,1,160,0,0,2,1,2,1
|
85 |
+
52,1,3,152,298,1,1,178,0,1.2,1,0,3,1
|
86 |
+
42,0,0,102,265,0,0,122,0,0.6,1,0,2,1
|
87 |
+
67,0,2,115,564,0,0,160,0,1.6,1,0,3,1
|
88 |
+
68,1,2,118,277,0,1,151,0,1,2,1,3,1
|
89 |
+
46,1,1,101,197,1,1,156,0,0,2,0,3,1
|
90 |
+
54,0,2,110,214,0,1,158,0,1.6,1,0,2,1
|
91 |
+
58,0,0,100,248,0,0,122,0,1,1,0,2,1
|
92 |
+
48,1,2,124,255,1,1,175,0,0,2,2,2,1
|
93 |
+
57,1,0,132,207,0,1,168,1,0,2,0,3,1
|
94 |
+
52,1,2,138,223,0,1,169,0,0,2,4,2,1
|
95 |
+
54,0,1,132,288,1,0,159,1,0,2,1,2,1
|
96 |
+
45,0,1,112,160,0,1,138,0,0,1,0,2,1
|
97 |
+
53,1,0,142,226,0,0,111,1,0,2,0,3,1
|
98 |
+
62,0,0,140,394,0,0,157,0,1.2,1,0,2,1
|
99 |
+
52,1,0,108,233,1,1,147,0,0.1,2,3,3,1
|
100 |
+
43,1,2,130,315,0,1,162,0,1.9,2,1,2,1
|
101 |
+
53,1,2,130,246,1,0,173,0,0,2,3,2,1
|
102 |
+
42,1,3,148,244,0,0,178,0,0.8,2,2,2,1
|
103 |
+
59,1,3,178,270,0,0,145,0,4.2,0,0,3,1
|
104 |
+
63,0,1,140,195,0,1,179,0,0,2,2,2,1
|
105 |
+
42,1,2,120,240,1,1,194,0,0.8,0,0,3,1
|
106 |
+
50,1,2,129,196,0,1,163,0,0,2,0,2,1
|
107 |
+
68,0,2,120,211,0,0,115,0,1.5,1,0,2,1
|
108 |
+
69,1,3,160,234,1,0,131,0,0.1,1,1,2,1
|
109 |
+
45,0,0,138,236,0,0,152,1,0.2,1,0,2,1
|
110 |
+
50,0,1,120,244,0,1,162,0,1.1,2,0,2,1
|
111 |
+
50,0,0,110,254,0,0,159,0,0,2,0,2,1
|
112 |
+
64,0,0,180,325,0,1,154,1,0,2,0,2,1
|
113 |
+
57,1,2,150,126,1,1,173,0,0.2,2,1,3,1
|
114 |
+
64,0,2,140,313,0,1,133,0,0.2,2,0,3,1
|
115 |
+
43,1,0,110,211,0,1,161,0,0,2,0,3,1
|
116 |
+
55,1,1,130,262,0,1,155,0,0,2,0,2,1
|
117 |
+
37,0,2,120,215,0,1,170,0,0,2,0,2,1
|
118 |
+
41,1,2,130,214,0,0,168,0,2,1,0,2,1
|
119 |
+
56,1,3,120,193,0,0,162,0,1.9,1,0,3,1
|
120 |
+
46,0,1,105,204,0,1,172,0,0,2,0,2,1
|
121 |
+
46,0,0,138,243,0,0,152,1,0,1,0,2,1
|
122 |
+
64,0,0,130,303,0,1,122,0,2,1,2,2,1
|
123 |
+
59,1,0,138,271,0,0,182,0,0,2,0,2,1
|
124 |
+
41,0,2,112,268,0,0,172,1,0,2,0,2,1
|
125 |
+
54,0,2,108,267,0,0,167,0,0,2,0,2,1
|
126 |
+
39,0,2,94,199,0,1,179,0,0,2,0,2,1
|
127 |
+
34,0,1,118,210,0,1,192,0,0.7,2,0,2,1
|
128 |
+
47,1,0,112,204,0,1,143,0,0.1,2,0,2,1
|
129 |
+
67,0,2,152,277,0,1,172,0,0,2,1,2,1
|
130 |
+
52,0,2,136,196,0,0,169,0,0.1,1,0,2,1
|
131 |
+
74,0,1,120,269,0,0,121,1,0.2,2,1,2,1
|
132 |
+
54,0,2,160,201,0,1,163,0,0,2,1,2,1
|
133 |
+
49,0,1,134,271,0,1,162,0,0,1,0,2,1
|
134 |
+
42,1,1,120,295,0,1,162,0,0,2,0,2,1
|
135 |
+
41,1,1,110,235,0,1,153,0,0,2,0,2,1
|
136 |
+
41,0,1,126,306,0,1,163,0,0,2,0,2,1
|
137 |
+
49,0,0,130,269,0,1,163,0,0,2,0,2,1
|
138 |
+
60,0,2,120,178,1,1,96,0,0,2,0,2,1
|
139 |
+
62,1,1,128,208,1,0,140,0,0,2,0,2,1
|
140 |
+
57,1,0,110,201,0,1,126,1,1.5,1,0,1,1
|
141 |
+
64,1,0,128,263,0,1,105,1,0.2,1,1,3,1
|
142 |
+
51,0,2,120,295,0,0,157,0,0.6,2,0,2,1
|
143 |
+
43,1,0,115,303,0,1,181,0,1.2,1,0,2,1
|
144 |
+
42,0,2,120,209,0,1,173,0,0,1,0,2,1
|
145 |
+
67,0,0,106,223,0,1,142,0,0.3,2,2,2,1
|
146 |
+
76,0,2,140,197,0,2,116,0,1.1,1,0,2,1
|
147 |
+
70,1,1,156,245,0,0,143,0,0,2,0,2,1
|
148 |
+
44,0,2,118,242,0,1,149,0,0.3,1,1,2,1
|
149 |
+
60,0,3,150,240,0,1,171,0,0.9,2,0,2,1
|
150 |
+
44,1,2,120,226,0,1,169,0,0,2,0,2,1
|
151 |
+
42,1,2,130,180,0,1,150,0,0,2,0,2,1
|
152 |
+
66,1,0,160,228,0,0,138,0,2.3,2,0,1,1
|
153 |
+
71,0,0,112,149,0,1,125,0,1.6,1,0,2,1
|
154 |
+
64,1,3,170,227,0,0,155,0,0.6,1,0,3,1
|
155 |
+
66,0,2,146,278,0,0,152,0,0,1,1,2,1
|
156 |
+
39,0,2,138,220,0,1,152,0,0,1,0,2,1
|
157 |
+
58,0,0,130,197,0,1,131,0,0.6,1,0,2,1
|
158 |
+
47,1,2,130,253,0,1,179,0,0,2,0,2,1
|
159 |
+
35,1,1,122,192,0,1,174,0,0,2,0,2,1
|
160 |
+
58,1,1,125,220,0,1,144,0,0.4,1,4,3,1
|
161 |
+
56,1,1,130,221,0,0,163,0,0,2,0,3,1
|
162 |
+
56,1,1,120,240,0,1,169,0,0,0,0,2,1
|
163 |
+
55,0,1,132,342,0,1,166,0,1.2,2,0,2,1
|
164 |
+
41,1,1,120,157,0,1,182,0,0,2,0,2,1
|
165 |
+
38,1,2,138,175,0,1,173,0,0,2,4,2,1
|
166 |
+
38,1,2,138,175,0,1,173,0,0,2,4,2,1
|
167 |
+
67,1,0,160,286,0,0,108,1,1.5,1,3,2,0
|
168 |
+
67,1,0,120,229,0,0,129,1,2.6,1,2,3,0
|
169 |
+
62,0,0,140,268,0,0,160,0,3.6,0,2,2,0
|
170 |
+
63,1,0,130,254,0,0,147,0,1.4,1,1,3,0
|
171 |
+
53,1,0,140,203,1,0,155,1,3.1,0,0,3,0
|
172 |
+
56,1,2,130,256,1,0,142,1,0.6,1,1,1,0
|
173 |
+
48,1,1,110,229,0,1,168,0,1,0,0,3,0
|
174 |
+
58,1,1,120,284,0,0,160,0,1.8,1,0,2,0
|
175 |
+
58,1,2,132,224,0,0,173,0,3.2,2,2,3,0
|
176 |
+
60,1,0,130,206,0,0,132,1,2.4,1,2,3,0
|
177 |
+
40,1,0,110,167,0,0,114,1,2,1,0,3,0
|
178 |
+
60,1,0,117,230,1,1,160,1,1.4,2,2,3,0
|
179 |
+
64,1,2,140,335,0,1,158,0,0,2,0,2,0
|
180 |
+
43,1,0,120,177,0,0,120,1,2.5,1,0,3,0
|
181 |
+
57,1,0,150,276,0,0,112,1,0.6,1,1,1,0
|
182 |
+
55,1,0,132,353,0,1,132,1,1.2,1,1,3,0
|
183 |
+
65,0,0,150,225,0,0,114,0,1,1,3,3,0
|
184 |
+
61,0,0,130,330,0,0,169,0,0,2,0,2,0
|
185 |
+
58,1,2,112,230,0,0,165,0,2.5,1,1,3,0
|
186 |
+
50,1,0,150,243,0,0,128,0,2.6,1,0,3,0
|
187 |
+
44,1,0,112,290,0,0,153,0,0,2,1,2,0
|
188 |
+
60,1,0,130,253,0,1,144,1,1.4,2,1,3,0
|
189 |
+
54,1,0,124,266,0,0,109,1,2.2,1,1,3,0
|
190 |
+
50,1,2,140,233,0,1,163,0,0.6,1,1,3,0
|
191 |
+
41,1,0,110,172,0,0,158,0,0,2,0,3,0
|
192 |
+
51,0,0,130,305,0,1,142,1,1.2,1,0,3,0
|
193 |
+
58,1,0,128,216,0,0,131,1,2.2,1,3,3,0
|
194 |
+
54,1,0,120,188,0,1,113,0,1.4,1,1,3,0
|
195 |
+
60,1,0,145,282,0,0,142,1,2.8,1,2,3,0
|
196 |
+
60,1,2,140,185,0,0,155,0,3,1,0,2,0
|
197 |
+
59,1,0,170,326,0,0,140,1,3.4,0,0,3,0
|
198 |
+
46,1,2,150,231,0,1,147,0,3.6,1,0,2,0
|
199 |
+
67,1,0,125,254,1,1,163,0,0.2,1,2,3,0
|
200 |
+
62,1,0,120,267,0,1,99,1,1.8,1,2,3,0
|
201 |
+
65,1,0,110,248,0,0,158,0,0.6,2,2,1,0
|
202 |
+
44,1,0,110,197,0,0,177,0,0,2,1,2,0
|
203 |
+
60,1,0,125,258,0,0,141,1,2.8,1,1,3,0
|
204 |
+
58,1,0,150,270,0,0,111,1,0.8,2,0,3,0
|
205 |
+
68,1,2,180,274,1,0,150,1,1.6,1,0,3,0
|
206 |
+
62,0,0,160,164,0,0,145,0,6.2,0,3,3,0
|
207 |
+
52,1,0,128,255,0,1,161,1,0,2,1,3,0
|
208 |
+
59,1,0,110,239,0,0,142,1,1.2,1,1,3,0
|
209 |
+
60,0,0,150,258,0,0,157,0,2.6,1,2,3,0
|
210 |
+
49,1,2,120,188,0,1,139,0,2,1,3,3,0
|
211 |
+
59,1,0,140,177,0,1,162,1,0,2,1,3,0
|
212 |
+
57,1,2,128,229,0,0,150,0,0.4,1,1,3,0
|
213 |
+
61,1,0,120,260,0,1,140,1,3.6,1,1,3,0
|
214 |
+
39,1,0,118,219,0,1,140,0,1.2,1,0,3,0
|
215 |
+
61,0,0,145,307,0,0,146,1,1,1,0,3,0
|
216 |
+
56,1,0,125,249,1,0,144,1,1.2,1,1,2,0
|
217 |
+
43,0,0,132,341,1,0,136,1,3,1,0,3,0
|
218 |
+
62,0,2,130,263,0,1,97,0,1.2,1,1,3,0
|
219 |
+
63,1,0,130,330,1,0,132,1,1.8,2,3,3,0
|
220 |
+
65,1,0,135,254,0,0,127,0,2.8,1,1,3,0
|
221 |
+
48,1,0,130,256,1,0,150,1,0,2,2,3,0
|
222 |
+
63,0,0,150,407,0,0,154,0,4,1,3,3,0
|
223 |
+
55,1,0,140,217,0,1,111,1,5.6,0,0,3,0
|
224 |
+
65,1,3,138,282,1,0,174,0,1.4,1,1,2,0
|
225 |
+
56,0,0,200,288,1,0,133,1,4,0,2,3,0
|
226 |
+
54,1,0,110,239,0,1,126,1,2.8,1,1,3,0
|
227 |
+
70,1,0,145,174,0,1,125,1,2.6,0,0,3,0
|
228 |
+
62,1,1,120,281,0,0,103,0,1.4,1,1,3,0
|
229 |
+
35,1,0,120,198,0,1,130,1,1.6,1,0,3,0
|
230 |
+
59,1,3,170,288,0,0,159,0,0.2,1,0,3,0
|
231 |
+
64,1,2,125,309,0,1,131,1,1.8,1,0,3,0
|
232 |
+
47,1,2,108,243,0,1,152,0,0,2,0,2,0
|
233 |
+
57,1,0,165,289,1,0,124,0,1,1,3,3,0
|
234 |
+
55,1,0,160,289,0,0,145,1,0.8,1,1,3,0
|
235 |
+
64,1,0,120,246,0,0,96,1,2.2,0,1,2,0
|
236 |
+
70,1,0,130,322,0,0,109,0,2.4,1,3,2,0
|
237 |
+
51,1,0,140,299,0,1,173,1,1.6,2,0,3,0
|
238 |
+
58,1,0,125,300,0,0,171,0,0,2,2,3,0
|
239 |
+
60,1,0,140,293,0,0,170,0,1.2,1,2,3,0
|
240 |
+
77,1,0,125,304,0,0,162,1,0,2,3,2,0
|
241 |
+
35,1,0,126,282,0,0,156,1,0,2,0,3,0
|
242 |
+
70,1,2,160,269,0,1,112,1,2.9,1,1,3,0
|
243 |
+
59,0,0,174,249,0,1,143,1,0,1,0,2,0
|
244 |
+
64,1,0,145,212,0,0,132,0,2,1,2,1,0
|
245 |
+
57,1,0,152,274,0,1,88,1,1.2,1,1,3,0
|
246 |
+
56,1,0,132,184,0,0,105,1,2.1,1,1,1,0
|
247 |
+
48,1,0,124,274,0,0,166,0,0.5,1,0,3,0
|
248 |
+
56,0,0,134,409,0,0,150,1,1.9,1,2,3,0
|
249 |
+
66,1,1,160,246,0,1,120,1,0,1,3,1,0
|
250 |
+
54,1,1,192,283,0,0,195,0,0,2,1,3,0
|
251 |
+
69,1,2,140,254,0,0,146,0,2,1,3,3,0
|
252 |
+
51,1,0,140,298,0,1,122,1,4.2,1,3,3,0
|
253 |
+
43,1,0,132,247,1,0,143,1,0.1,1,4,3,0
|
254 |
+
62,0,0,138,294,1,1,106,0,1.9,1,3,2,0
|
255 |
+
67,1,0,100,299,0,0,125,1,0.9,1,2,2,0
|
256 |
+
59,1,3,160,273,0,0,125,0,0,2,0,2,0
|
257 |
+
45,1,0,142,309,0,0,147,1,0,1,3,3,0
|
258 |
+
58,1,0,128,259,0,0,130,1,3,1,2,3,0
|
259 |
+
50,1,0,144,200,0,0,126,1,0.9,1,0,3,0
|
260 |
+
62,0,0,150,244,0,1,154,1,1.4,1,0,2,0
|
261 |
+
38,1,3,120,231,0,1,182,1,3.8,1,0,3,0
|
262 |
+
66,0,0,178,228,1,1,165,1,1,1,2,3,0
|
263 |
+
52,1,0,112,230,0,1,160,0,0,2,1,2,0
|
264 |
+
53,1,0,123,282,0,1,95,1,2,1,2,3,0
|
265 |
+
63,0,0,108,269,0,1,169,1,1.8,1,2,2,0
|
266 |
+
54,1,0,110,206,0,0,108,1,0,1,1,2,0
|
267 |
+
66,1,0,112,212,0,0,132,1,0.1,2,1,2,0
|
268 |
+
55,0,0,180,327,0,2,117,1,3.4,1,0,2,0
|
269 |
+
49,1,2,118,149,0,0,126,0,0.8,2,3,2,0
|
270 |
+
54,1,0,122,286,0,0,116,1,3.2,1,2,2,0
|
271 |
+
56,1,0,130,283,1,0,103,1,1.6,0,0,3,0
|
272 |
+
46,1,0,120,249,0,0,144,0,0.8,2,0,3,0
|
273 |
+
61,1,3,134,234,0,1,145,0,2.6,1,2,2,0
|
274 |
+
67,1,0,120,237,0,1,71,0,1,1,0,2,0
|
275 |
+
58,1,0,100,234,0,1,156,0,0.1,2,1,3,0
|
276 |
+
47,1,0,110,275,0,0,118,1,1,1,1,2,0
|
277 |
+
52,1,0,125,212,0,1,168,0,1,2,2,3,0
|
278 |
+
58,1,0,146,218,0,1,105,0,2,1,1,3,0
|
279 |
+
57,1,1,124,261,0,1,141,0,0.3,2,0,3,0
|
280 |
+
58,0,1,136,319,1,0,152,0,0,2,2,2,0
|
281 |
+
61,1,0,138,166,0,0,125,1,3.6,1,1,2,0
|
282 |
+
42,1,0,136,315,0,1,125,1,1.8,1,0,1,0
|
283 |
+
52,1,0,128,204,1,1,156,1,1,1,0,0,0
|
284 |
+
59,1,2,126,218,1,1,134,0,2.2,1,1,1,0
|
285 |
+
40,1,0,152,223,0,1,181,0,0,2,0,3,0
|
286 |
+
61,1,0,140,207,0,0,138,1,1.9,2,1,3,0
|
287 |
+
46,1,0,140,311,0,1,120,1,1.8,1,2,3,0
|
288 |
+
59,1,3,134,204,0,1,162,0,0.8,2,2,2,0
|
289 |
+
57,1,1,154,232,0,0,164,0,0,2,1,2,0
|
290 |
+
57,1,0,110,335,0,1,143,1,3,1,1,3,0
|
291 |
+
55,0,0,128,205,0,2,130,1,2,1,1,3,0
|
292 |
+
61,1,0,148,203,0,1,161,0,0,2,1,3,0
|
293 |
+
58,1,0,114,318,0,2,140,0,4.4,0,3,1,0
|
294 |
+
58,0,0,170,225,1,0,146,1,2.8,1,2,1,0
|
295 |
+
67,1,2,152,212,0,0,150,0,0.8,1,0,3,0
|
296 |
+
44,1,0,120,169,0,1,144,1,2.8,0,0,1,0
|
297 |
+
63,1,0,140,187,0,0,144,1,4,2,2,3,0
|
298 |
+
63,0,0,124,197,0,1,136,1,0,1,0,2,0
|
299 |
+
59,1,0,164,176,1,0,90,0,1,1,2,1,0
|
300 |
+
57,0,0,140,241,0,1,123,1,0.2,1,0,3,0
|
301 |
+
45,1,3,110,264,0,1,132,0,1.2,1,0,3,0
|
302 |
+
68,1,0,144,193,1,1,141,0,3.4,1,2,3,0
|
303 |
+
57,1,0,130,131,0,1,115,1,1.2,1,1,3,0
|
304 |
+
57,0,1,130,236,0,0,174,0,0,1,1,2,0
|
heart_disease_dt_model.pkl
ADDED
Binary file (4.92 kB). View file
|
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
pandas
|
3 |
+
seaborn
|
4 |
+
scikit-learn
|
5 |
+
setuptools
|
6 |
+
concrete-ml
|
7 |
+
concrete
|
server.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import seaborn as sns
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import joblib
|
6 |
+
|
7 |
+
import os
|
8 |
+
import shutil
|
9 |
+
|
10 |
+
# Define the directory for FHE client/server files
|
11 |
+
fhe_directory = '/tmp/fhe_client_server_files/'
|
12 |
+
|
13 |
+
# Create the directory if it does not exist
|
14 |
+
if not os.path.exists(fhe_directory):
|
15 |
+
os.makedirs(fhe_directory)
|
16 |
+
else:
|
17 |
+
# If it exists, delete its contents
|
18 |
+
shutil.rmtree(fhe_directory)
|
19 |
+
os.makedirs(fhe_directory)
|
20 |
+
|
21 |
+
data=pd.read_csv('data/heart.xls')
|
22 |
+
|
23 |
+
data.info() #checking the info
|
24 |
+
|
25 |
+
data_corr=data.corr()
|
26 |
+
|
27 |
+
plt.figure(figsize=(20,20))
|
28 |
+
sns.heatmap(data=data_corr,annot=True)
|
29 |
+
#Heatmap for data
|
30 |
+
|
31 |
+
feature_value=np.array(data_corr['output'])
|
32 |
+
for i in range(len(feature_value)):
|
33 |
+
if feature_value[i]<0:
|
34 |
+
feature_value[i]=-feature_value[i]
|
35 |
+
|
36 |
+
print(feature_value)
|
37 |
+
|
38 |
+
features_corr=pd.DataFrame(feature_value,index=data_corr['output'].index,columns=['correalation'])
|
39 |
+
|
40 |
+
feature_sorted=features_corr.sort_values(by=['correalation'],ascending=False)
|
41 |
+
|
42 |
+
feature_selected=feature_sorted.index
|
43 |
+
|
44 |
+
feature_selected #selected features which are very much correalated
|
45 |
+
|
46 |
+
clean_data=data[feature_selected]
|
47 |
+
|
48 |
+
from sklearn.tree import DecisionTreeClassifier #using sklearn decisiontreeclassifier
|
49 |
+
from sklearn.model_selection import train_test_split
|
50 |
+
|
51 |
+
#making input and output dataset
|
52 |
+
X=clean_data.iloc[:,1:]
|
53 |
+
Y=clean_data['output']
|
54 |
+
|
55 |
+
x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.25,random_state=0)
|
56 |
+
|
57 |
+
print(x_train.shape,y_train.shape,x_test.shape,y_test.shape) #data is splited in traing and testing dataset
|
58 |
+
|
59 |
+
# feature scaling
|
60 |
+
from sklearn.preprocessing import StandardScaler
|
61 |
+
sc=StandardScaler()
|
62 |
+
x_train=sc.fit_transform(x_train)
|
63 |
+
x_test=sc.transform(x_test)
|
64 |
+
|
65 |
+
#training our model
|
66 |
+
dt=DecisionTreeClassifier(criterion='entropy',max_depth=6)
|
67 |
+
dt.fit(x_train,y_train)
|
68 |
+
#dt.compile(x_trqin)
|
69 |
+
|
70 |
+
#predicting the value on testing data
|
71 |
+
y_pred=dt.predict(x_test)
|
72 |
+
|
73 |
+
#ploting the data
|
74 |
+
from sklearn.metrics import confusion_matrix
|
75 |
+
conf_mat=confusion_matrix(y_test,y_pred)
|
76 |
+
print(conf_mat)
|
77 |
+
accuracy=dt.score(x_test,y_test)
|
78 |
+
print("\nThe accuracy of decisiontreelassifier on Heart disease prediction dataset is "+str(round(accuracy*100,2))+"%")
|
79 |
+
|
80 |
+
joblib.dump(dt, 'heart_disease_dt_model.pkl')
|
81 |
+
|
82 |
+
from concrete.ml.sklearn.tree import DecisionTreeClassifier
|
83 |
+
|
84 |
+
fhe_compatible = DecisionTreeClassifier.from_sklearn_model(dt, x_train, n_bits = 10)
|
85 |
+
fhe_compatible.compile(x_train)
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
#### server
|
93 |
+
from concrete.ml.deployment import FHEModelDev, FHEModelClient, FHEModelServer
|
94 |
+
|
95 |
+
# Setup the development environment
|
96 |
+
dev = FHEModelDev(path_dir=fhe_directory, model=fhe_compatible)
|
97 |
+
dev.save()
|
98 |
+
|
99 |
+
# Setup the server
|
100 |
+
server = FHEModelServer(path_dir=fhe_directory)
|
101 |
+
server.load()
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
####### client
|
110 |
+
|
111 |
+
from concrete.ml.deployment import FHEModelDev, FHEModelClient, FHEModelServer
|
112 |
+
|
113 |
+
# Setup the client
|
114 |
+
client = FHEModelClient(path_dir=fhe_directory, key_dir="/tmp/keys_client")
|
115 |
+
serialized_evaluation_keys = client.get_serialized_evaluation_keys()
|
116 |
+
|
117 |
+
|
118 |
+
# Load the dataset and select the relevant features
|
119 |
+
data = pd.read_csv('data/heart.xls')
|
120 |
+
|
121 |
+
# Perform the correlation analysis
|
122 |
+
data_corr = data.corr()
|
123 |
+
|
124 |
+
# Select features based on correlation with 'output'
|
125 |
+
feature_value = np.array(data_corr['output'])
|
126 |
+
for i in range(len(feature_value)):
|
127 |
+
if feature_value[i] < 0:
|
128 |
+
feature_value[i] = -feature_value[i]
|
129 |
+
|
130 |
+
features_corr = pd.DataFrame(feature_value, index=data_corr['output'].index, columns=['correlation'])
|
131 |
+
feature_sorted = features_corr.sort_values(by=['correlation'], ascending=False)
|
132 |
+
feature_selected = feature_sorted.index
|
133 |
+
|
134 |
+
# Clean the data by selecting the most correlated features
|
135 |
+
clean_data = data[feature_selected]
|
136 |
+
|
137 |
+
# Extract the first row of feature data for prediction (excluding 'output' column)
|
138 |
+
sample_data = clean_data.iloc[0, 1:].values.reshape(1, -1) # Reshape to 2D array for model input
|
139 |
+
|
140 |
+
encrypted_data = client.quantize_encrypt_serialize(sample_data)
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
##### end client
|
145 |
+
|
146 |
+
encrypted_result = server.run(encrypted_data, serialized_evaluation_keys)
|
147 |
+
|
148 |
+
result = client.deserialize_decrypt_dequantize(encrypted_result)
|
149 |
+
print(result)
|