ZamaKlinikV2 / server2.py
Nos7's picture
Upload server2.py
78f0027 verified
raw
history blame
3.9 kB
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import joblib
from sklearn.tree import DecisionTreeClassifier, XGBClassifier #using sklearn decisiontreeclassifier
from sklearn.model_selection import train_test_split
import os
import shutil
# Define the directory for FHE client/server files
fhe_directory = '/tmp/fhe_client_server_files/'
# Create the directory if it does not exist
if not os.path.exists(fhe_directory):
os.makedirs(fhe_directory)
else:
# If it exists, delete its contents
shutil.rmtree(fhe_directory)
os.makedirs(fhe_directory)
data=pd.read_csv('data/heart.xls')
data.info() #checking the info
data_corr=data.corr()
plt.figure(figsize=(20,20))
sns.heatmap(data=data_corr,annot=True)
#Heatmap for data
"""
# Get the Data
X_train, y_train, X_val, y_val = train_test_split()
classifier = XGBClassifier()
# Training the Model
classifier = classifier.fit(X_train, y_train)
# Trained Model Evaluation on Validation Dataset
confidence = classifier.score(X_val, y_val)
# Validation Data Prediction
y_pred = classifier.predict(X_val)
# Model Validation Accuracy
accuracy = accuracy_score(y_val, y_pred)
# Model Confusion Matrix
conf_mat = confusion_matrix(y_val, y_pred)
# Model Classification Report
clf_report = classification_report(y_val, y_pred)
# Model Cross Validation Score
score = cross_val_score(classifier, X_val, y_val, cv=3)
try:
# Load Trained Model
clf = load(str(self.model_save_path + saved_model_name + ".joblib"))
except Exception as e:
print("Model not found...")
if test_data is not None:
result = clf.predict(test_data)
print(result)
else:
result = clf.predict(self.test_features)
accuracy = accuracy_score(self.test_labels, result)
clf_report = classification_report(self.test_labels, result)
print(accuracy, clf_report)
"""
####################
feature_value=np.array(data_corr['output'])
for i in range(len(feature_value)):
if feature_value[i]<0:
feature_value[i]=-feature_value[i]
print(feature_value)
features_corr=pd.DataFrame(feature_value,index=data_corr['output'].index,columns=['correalation'])
feature_sorted=features_corr.sort_values(by=['correalation'],ascending=False)
feature_selected=feature_sorted.index
feature_selected #selected features which are very much correalated
clean_data=data[feature_selected]
#making input and output dataset
X=clean_data.iloc[:,1:]
Y=clean_data['output']
x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.25,random_state=0)
print(x_train.shape,y_train.shape,x_test.shape,y_test.shape) #data is splited in traing and testing dataset
# feature scaling
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
x_train=sc.fit_transform(x_train)
x_test=sc.transform(x_test)
#training our model
dt=XGBClassifier(criterion='entropy',max_depth=6)
dt.fit(x_train,y_train)
#dt.compile(x_trqin)
#predicting the value on testing data
y_pred=dt.predict(x_test)
#ploting the data
from sklearn.metrics import confusion_matrix
conf_mat=confusion_matrix(y_test,y_pred)
print(conf_mat)
accuracy=dt.score(x_test,y_test)
print("\nThe accuracy of decisiontreelassifier on Heart disease prediction dataset is "+str(round(accuracy*100,2))+"%")
joblib.dump(dt, 'heart_disease_dt_model.pkl')
from concrete.ml.sklearn import DecisionTreeClassifier as ConcreteDecisionTreeClassifier
from concrete.ml.sklearn import XGBClassifier as ConcreteXGBClassifier
fhe_compatible = ConcreteXGBClassifier.from_sklearn_model(dt, x_train, n_bits = 10) #de FHE
fhe_compatible.compile(x_train)
#### server
from concrete.ml.deployment import FHEModelDev, FHEModelClient, FHEModelServer
# Setup the development environment
dev = FHEModelDev(path_dir=fhe_directory, model=fhe_compatible)
dev.save()
# Setup the server
server = FHEModelServer(path_dir=fhe_directory)
server.load()