ZamaKlinikV2 / app.py
AeternumS's picture
fix
097c2b7
raw
history blame
698 Bytes
import numpy as np
import pandas as pd
import joblib # for loading the saved model
from sklearn.tree import DecisionTreeClassifier #using sklearn decisiontreeclassifier
#from concrete.ml.sklearn.xgb import DecisionTreeClassifier
# Load the saved model
dt = joblib.load('heart_disease_dt_model.pkl')
#fhe_circuit =
# Make prediction on the first row of data
#prediction = dt.predict(sample_data, fhe="execute")
prediction = dt.predict(sample_data) # clair
# Display the prediction result
print(prediction)
if prediction == 1:
print("Prediction: The patient is likely to have heart disease.")
else:
print("Prediction: The patient is unlikely to have heart disease.")