ZamaKlinik / app.py
AeternumS's picture
last
a935c1d
raw
history blame
4.69 kB
import streamlit as st
import requests
from PIL import Image
import pytesseract
import os
from langchain_huggingface import HuggingFaceEndpoint
from langchain.chains import LLMChain
from langchain_core.prompts import PromptTemplate
import re
import json
# Set up the Hugging Face API key
api_key = os.environ.get("HFBearer")
os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_key
# API URL and headers
API_URL = "https://pllfc7e5i0rujahy.us-east-1.aws.endpoints.huggingface.cloud"
# Function to extract text from image
def extract_text_from_image(image):
return pytesseract.image_to_string(image)
# Function to extract JSON from text
def extract_json(text):
match = re.search(r'<JSON>\s*(.*?)\s*</JSON>', text, re.DOTALL)
if match:
json_str = match.group(1)
try:
return json.loads(json_str)
except json.JSONDecodeError:
return "Error decoding JSON"
return "No JSON found"
# Function to get metadata title from image
def get_image_metadata(image):
return image.name.split('.')[0]
def count_tokens(text):
return len(text.split())
# Mapping of image parameters to expected fields
image_params = {
"bilan-atherosclerose": "medecin_responsable, rythme_sinusal, valeur_EIM, score_calcique",
"bilan-medical": "medecin_responsable, date_naissance, prenom, nom, identifiant_patient, nom_medecin",
"ECG": "medecin_responsable, poids, taille, ECG_repos_valeur_par_minute, valeur_FMT, valeur_niveau_atteint, valeur_diminution_frequence_cardiaque_bpm",
"echo-doppler": "medecin_responsable, sous_clavieres, vertebrales, carotides",
"echographie-poumons": "medecin_responsable, score calcique, technique, resultats",
"echotomographie-abdominale": "medecin_responsable, foie, vesicule, pancreas, reins, rate, aorte_abdominale, conclusion",
"echotomographie-cardiaque": "medecin_responsable, taille, poids, surface_corporelle, conclusion",
"echotomographie-prostate": "medecin_responsable, vessie, ureteres, prostate, conclusion",
"hematologie": "medecin_responsable, leucocytes, hematies, hemoglobines, hematocrite"
}
# Streamlit app layout
st.title("Medical Patient Data Extractor")
st.write("This app extracts medical patient data from uploaded images.")
# User prompt template
user_input = """
You will extract parameters from a text inside a JSON object, written between <JSON> and </JSON>.
List of parameters: {parameters}
Here is an example of a valid response:
<JSON>
{{"date_naissance": "", "prenom": "", "nom": ""}}
</JSON>
Here is the text from which you need to extract the parameters:
{texte}
"""
prompt = PromptTemplate.from_template(user_input)
# Initialize Hugging Face LLM
llm = HuggingFaceEndpoint(endpoint_url=API_URL)
llm_chain = prompt | llm
# File uploader for multiple images
uploaded_images = st.file_uploader("Upload images", type=["png", "jpg", "jpeg"], accept_multiple_files=True)
if st.button("Submit"):
if uploaded_images:
all_json_data = {} # Dictionary to store JSON data for each image
for uploaded_image in uploaded_images:
with st.spinner(f"Extracting text from image: {uploaded_image.name}..."):
image = Image.open(uploaded_image)
# Display the uploaded image
st.image(image, caption=f"Uploaded Image: {uploaded_image.name}", use_column_width=True)
extracted_text = extract_text_from_image(image)
st.text_area(f"Extracted Text from {uploaded_image.name}", value=extracted_text, height=200, key=f"{uploaded_image.name}")
max_text_length = 500 # Adjust as needed
if count_tokens(extracted_text) > max_text_length:
extracted_text = " ".join(extracted_text.split()[:max_text_length])
title = get_image_metadata(uploaded_image)
parameters = image_params.get(title, "Unknown parameters")
with st.spinner(f"Fetching response from API for {uploaded_image.name}..."):
output = llm_chain.invoke({"texte": extracted_text, "parameters": parameters})
st.success(f"Response received for {uploaded_image.name}!")
# Extract JSON from the API output
json_data = extract_json(output)
all_json_data[title] = json_data
st.write(f"**{title} JSON Data:**")
st.json(json_data) # Display JSON nicely
st.write("All extracted JSON Data:")
st.json(all_json_data) # Display all extracted JSON data together
else:
st.warning("Please upload at least one image to extract text.")