Spaces:
Sleeping
Sleeping
Commit
·
b65ff94
1
Parent(s):
0ebbd8e
go
Browse files
app.py
CHANGED
|
@@ -1,30 +1,13 @@
|
|
| 1 |
-
from fastapi import FastAPI, File, Form, UploadFile,
|
| 2 |
from fastapi.responses import JSONResponse, Response
|
| 3 |
-
|
|
|
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
from pydantic import BaseModel
|
| 6 |
|
| 7 |
-
|
| 8 |
-
from concrete.ml.deployment import FHEModelClient
|
| 9 |
import subprocess
|
| 10 |
from pathlib import Path
|
| 11 |
-
|
| 12 |
-
from utils import (
|
| 13 |
-
CLIENT_DIR,
|
| 14 |
-
CURRENT_DIR,
|
| 15 |
-
DEPLOYMENT_DIR,
|
| 16 |
-
SERVER_DIR,
|
| 17 |
-
INPUT_BROWSER_LIMIT,
|
| 18 |
-
KEYS_DIR,
|
| 19 |
-
SERVER_URL,
|
| 20 |
-
TARGET_COLUMNS,
|
| 21 |
-
TRAINING_FILENAME,
|
| 22 |
-
clean_directory,
|
| 23 |
-
get_disease_name,
|
| 24 |
-
load_data,
|
| 25 |
-
pretty_print,
|
| 26 |
-
)
|
| 27 |
-
|
| 28 |
import time
|
| 29 |
from typing import List
|
| 30 |
|
|
@@ -37,6 +20,23 @@ class Symptoms(BaseModel):
|
|
| 37 |
|
| 38 |
app = FastAPI()
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
@app.get("/")
|
| 41 |
def greet_json():
|
| 42 |
return {"Hello": "World!"}
|
|
|
|
| 1 |
+
from fastapi import FastAPI, File, Form, UploadFile, HTTPException
|
| 2 |
from fastapi.responses import JSONResponse, Response
|
| 3 |
+
|
| 4 |
+
from utils import extract_json_from_images
|
| 5 |
+
|
| 6 |
import numpy as np
|
| 7 |
from pydantic import BaseModel
|
| 8 |
|
|
|
|
|
|
|
| 9 |
import subprocess
|
| 10 |
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
import time
|
| 12 |
from typing import List
|
| 13 |
|
|
|
|
| 20 |
|
| 21 |
app = FastAPI()
|
| 22 |
|
| 23 |
+
@app.post("/extract-json")
|
| 24 |
+
async def extract_json(files: List[UploadFile] = File(...)):
|
| 25 |
+
try:
|
| 26 |
+
# Read the uploaded images
|
| 27 |
+
uploaded_images = [file.file for file in files]
|
| 28 |
+
|
| 29 |
+
# Extract JSON from images
|
| 30 |
+
json_data = extract_json_from_images(uploaded_images)
|
| 31 |
+
|
| 32 |
+
# Close the file objects
|
| 33 |
+
for file in uploaded_images:
|
| 34 |
+
file.close()
|
| 35 |
+
|
| 36 |
+
return JSONResponse(content=json_data)
|
| 37 |
+
except Exception as e:
|
| 38 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 39 |
+
|
| 40 |
@app.get("/")
|
| 41 |
def greet_json():
|
| 42 |
return {"Hello": "World!"}
|
utils.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import requests
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import pytesseract
|
| 5 |
+
import os
|
| 6 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
| 7 |
+
from langchain.chains import LLMChain
|
| 8 |
+
from langchain_core.prompts import PromptTemplate
|
| 9 |
+
import re
|
| 10 |
+
import json
|
| 11 |
+
|
| 12 |
+
api_key = os.environ.get("HFBearer")
|
| 13 |
+
os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_key
|
| 14 |
+
|
| 15 |
+
# API URL and headers
|
| 16 |
+
API_URL = "https://pllfc7e5i0rujahy.us-east-1.aws.endpoints.huggingface.cloud"
|
| 17 |
+
|
| 18 |
+
# Function to extract text from image
|
| 19 |
+
def extract_text_from_image(image):
|
| 20 |
+
text = pytesseract.image_to_string(image)
|
| 21 |
+
return text
|
| 22 |
+
|
| 23 |
+
# Function to extract JSON from text
|
| 24 |
+
def extract_json(text):
|
| 25 |
+
# Use regex to find the JSON between <JSON> and </JSON>
|
| 26 |
+
match = re.search(r'<JSON>\s*(.*?)\s*</JSON>', text, re.DOTALL)
|
| 27 |
+
|
| 28 |
+
if match:
|
| 29 |
+
json_str = match.group(1) # Get the JSON string
|
| 30 |
+
try:
|
| 31 |
+
# Load the JSON string into a Python dictionary
|
| 32 |
+
json_data = json.loads(json_str)
|
| 33 |
+
return json_data
|
| 34 |
+
except json.JSONDecodeError:
|
| 35 |
+
return "Erreur de décodage JSON"
|
| 36 |
+
else:
|
| 37 |
+
return "Aucun JSON trouvé"
|
| 38 |
+
|
| 39 |
+
# Function to get metadata title from image
|
| 40 |
+
def get_image_metadata(image):
|
| 41 |
+
# You can customize this function to extract other metadata as needed
|
| 42 |
+
title = image.name.split('.')[0] # Simple title extraction from file name without extension
|
| 43 |
+
return title
|
| 44 |
+
|
| 45 |
+
def count_tokens(text):
|
| 46 |
+
return len(text.split())
|
| 47 |
+
|
| 48 |
+
image_params = {
|
| 49 |
+
"bilan-atherosclerose": "medecin_responsable, rythme_sinusal, valeur_EIM, score_calcique",
|
| 50 |
+
"bilan-medical": "medecin_responsable, date_naissance, prenom, nom, identifiant_patient, nom_medecin",
|
| 51 |
+
"ECG": "medecin_responsable, poids, taille, ECG_repos_valeur_par_minute), valeur_FMT, valeur_niveau_atteint, valeur_diminution_frequence_cardiaque_bpm",
|
| 52 |
+
"echo-doppler": "medecin_responsable, sous_clavieres, vertebrales, carotides",
|
| 53 |
+
"echographie-poumons": "medecin_responsable, score calcique, technique, resultats",
|
| 54 |
+
"echotomographie-abdominale": "medecin_responsable, foie, vesicule, pancreas, reins, rate, aorte_abdominale, conclusion",
|
| 55 |
+
"echotomographie-cardiaque": "medecin_responsable, taille, poids, surface_corporelle, conclusion",
|
| 56 |
+
"echotomographie-prostate": "medecin_responsable, vessie, ureteres, prostate, conclusion",
|
| 57 |
+
"hematologie": "medecin_responsable, leucocytes, hematies, hemoglobines, hematocrite"
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
user_input = """
|
| 61 |
+
Vous allez extraire des paramètres d'un texte à l'intérieur d'un objet JSON, écrit entre <JSON> et </JSON>.
|
| 62 |
+
Liste des paramètres : {parameters}
|
| 63 |
+
|
| 64 |
+
Voici un exemple de réponse valide :
|
| 65 |
+
<JSON>
|
| 66 |
+
{{"date_naissance": "", "prenom": "", "nom": ""}}
|
| 67 |
+
</JSON>
|
| 68 |
+
|
| 69 |
+
Voici le texte à partir duquel vous devez extraire les paramètres :
|
| 70 |
+
{texte}
|
| 71 |
+
"""
|
| 72 |
+
|
| 73 |
+
# prompt = PromptTemplate.from_template(user_input)
|
| 74 |
+
|
| 75 |
+
llm = HuggingFaceEndpoint(
|
| 76 |
+
endpoint_url=API_URL,
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
# llm_chain = prompt | llm
|
| 80 |
+
|
| 81 |
+
# # File uploader for multiple images
|
| 82 |
+
# uploaded_images = st.file_uploader("Upload images", type=["png", "jpg", "jpeg"], accept_multiple_files=True)
|
| 83 |
+
|
| 84 |
+
# # Modify the Streamlit section to extract the JSON for multiple images
|
| 85 |
+
# if st.button("Submit"):
|
| 86 |
+
# if uploaded_images:
|
| 87 |
+
# all_json_data = {} # Dictionary to store JSON data for each image
|
| 88 |
+
# for uploaded_image in uploaded_images:
|
| 89 |
+
# with st.spinner(f"Extracting text from image: {uploaded_image.name}..."):
|
| 90 |
+
# image = Image.open(uploaded_image)
|
| 91 |
+
# extracted_text = extract_text_from_image(image)
|
| 92 |
+
|
| 93 |
+
# max_text_length = 500 # Adjust as needed to keep total tokens under 1024
|
| 94 |
+
# if count_tokens(extracted_text) > max_text_length:
|
| 95 |
+
# extracted_text = " ".join(extracted_text.split()[:max_text_length])
|
| 96 |
+
|
| 97 |
+
# with st.spinner(f"Fetching response from API for {uploaded_image.name}..."):
|
| 98 |
+
# # Get metadata title from the image
|
| 99 |
+
# title = get_image_metadata(uploaded_image)
|
| 100 |
+
# parameters = image_params[title]
|
| 101 |
+
# output = llm_chain.invoke({"texte": extracted_text, "parameters": parameters})
|
| 102 |
+
# st.success(f"Response received for {uploaded_image.name}!")
|
| 103 |
+
|
| 104 |
+
# # Extract JSON from the API output
|
| 105 |
+
# json_data = extract_json(output) # Extract JSON from the API output
|
| 106 |
+
# all_json_data[title] = json_data # Store JSON data with title as key
|
| 107 |
+
# st.write(title, json_data)
|
| 108 |
+
|
| 109 |
+
# # Display all extracted JSON data
|
| 110 |
+
# st.write("Extracted JSON Data for all images.")
|
| 111 |
+
# else:
|
| 112 |
+
# st.warning("Please upload at least one image to extract text.")
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def extract_json_from_images(uploaded_images):
|
| 117 |
+
all_json_data = {} # Dictionary to store JSON data for each image
|
| 118 |
+
|
| 119 |
+
for uploaded_image in uploaded_images:
|
| 120 |
+
image = Image.open(uploaded_image)
|
| 121 |
+
extracted_text = extract_text_from_image(image)
|
| 122 |
+
|
| 123 |
+
max_text_length = 500 # Adjust as needed to keep total tokens under 1024
|
| 124 |
+
if count_tokens(extracted_text) > max_text_length:
|
| 125 |
+
extracted_text = " ".join(extracted_text.split()[:max_text_length])
|
| 126 |
+
|
| 127 |
+
# Get metadata title from the image
|
| 128 |
+
title = get_image_metadata(uploaded_image)
|
| 129 |
+
parameters = image_params[title]
|
| 130 |
+
|
| 131 |
+
# Prepare the prompt and invoke the LLM chain
|
| 132 |
+
user_input = """
|
| 133 |
+
Vous allez extraire des paramètres d'un texte à l'intérieur d'un objet JSON, écrit entre <JSON> et </JSON>.
|
| 134 |
+
Liste des paramètres : {parameters}
|
| 135 |
+
|
| 136 |
+
Voici un exemple de réponse valide :
|
| 137 |
+
<JSON>
|
| 138 |
+
{{"date_naissance": "", "prenom": "", "nom": ""}}
|
| 139 |
+
</JSON>
|
| 140 |
+
|
| 141 |
+
Voici le texte à partir duquel vous devez extraire les paramètres :
|
| 142 |
+
{texte}
|
| 143 |
+
"""
|
| 144 |
+
prompt = PromptTemplate.from_template(user_input)
|
| 145 |
+
llm_chain = prompt | llm
|
| 146 |
+
|
| 147 |
+
output = llm_chain.invoke({"texte": extracted_text, "parameters": parameters})
|
| 148 |
+
|
| 149 |
+
# Extract JSON from the API output
|
| 150 |
+
json_data = extract_json(output) # Extract JSON from the API output
|
| 151 |
+
all_json_data[title] = json_data # Store JSON data with title as key
|
| 152 |
+
|
| 153 |
+
return all_json_data
|