Mojmir commited on
Commit
8b263e2
1 Parent(s): 71d7efc

adding example ussage

Browse files
__pycache__/custom_resnet.cpython-310.pyc ADDED
Binary file (13.9 kB). View file
 
app.py CHANGED
@@ -4,6 +4,7 @@ import torch.nn as nn
4
  from torchvision import transforms
5
  from PIL import Image
6
  import time
 
7
 
8
  from concrete.fhe import Configuration
9
  from concrete.ml.torch.compile import compile_torch_model
@@ -37,6 +38,7 @@ def load_secure_model(model):
37
  )
38
  return secure_model
39
 
 
40
  model = load_model('models/deepfake_detection_model.pth', 'cpu')
41
  secure_model = load_secure_model(model)
42
 
@@ -72,19 +74,27 @@ def predict(image, mode):
72
  predicted_class = class_names[preds[0]]
73
  return f"Predicted: {predicted_class}", f"Time taken: {elapsed_time:.2f} seconds"
74
 
 
 
 
 
 
 
 
75
  # Gradio interface
76
  iface = gr.Interface(
77
  fn=predict,
78
  inputs=[
79
- gr.Image(type="filepath", label="Upload an Image"), # Update to gr.Image
80
- gr.Radio(choices=["Fast", "Secure"], label="Inference Mode", value="Fast") # Update to gr.Radio
81
  ],
82
  outputs=[
83
- gr.Textbox(label="Prediction"), # Update to gr.Textbox
84
- gr.Textbox(label="Time Taken") # Update to gr.Textbox
85
  ],
 
86
  title="Deepfake Detection Model",
87
- description="Upload an image and select the inference mode (Fast or Secure)."
88
  )
89
 
90
  if __name__ == "__main__":
 
4
  from torchvision import transforms
5
  from PIL import Image
6
  import time
7
+ import os
8
 
9
  from concrete.fhe import Configuration
10
  from concrete.ml.torch.compile import compile_torch_model
 
38
  )
39
  return secure_model
40
 
41
+ # Load models
42
  model = load_model('models/deepfake_detection_model.pth', 'cpu')
43
  secure_model = load_secure_model(model)
44
 
 
74
  predicted_class = class_names[preds[0]]
75
  return f"Predicted: {predicted_class}", f"Time taken: {elapsed_time:.2f} seconds"
76
 
77
+
78
+ # Path to example images for "Fake" and "Real" classes
79
+ example_images = [
80
+ ["data/fake/fake_1.jpeg", "Fast"], # Fake example
81
+ ["data/real/real_1.jpg", "Fast"], # Real example
82
+ ]
83
+
84
  # Gradio interface
85
  iface = gr.Interface(
86
  fn=predict,
87
  inputs=[
88
+ gr.Image(type="filepath", label="Upload an Image"), # Image input
89
+ gr.Radio(choices=["Fast", "Secure"], label="Inference Mode", value="Fast") # Inference mode
90
  ],
91
  outputs=[
92
+ gr.Textbox(label="Prediction"), # Prediction output
93
+ gr.Textbox(label="Time Taken") # Time taken output
94
  ],
95
+ examples=example_images, # Add default examples for Fake and Real images
96
  title="Deepfake Detection Model",
97
+ description="Upload an image or select a sample and choose the inference mode (Fast or Secure)."
98
  )
99
 
100
  if __name__ == "__main__":
data/fake/fake_1.jpeg ADDED
data/fake/fake_12.jpg ADDED
data/fake/fake_64.jpg ADDED
data/real/real_1.jpg ADDED
data/real/real_63.jpg ADDED