|
""" |
|
This file is a modification of the original ResNet implementation from: |
|
https://github.com/pytorch/vision/blob/bf01bab6125c5f1152e4f336b470399e52a8559d/torchvision/models/resnet.py |
|
""" |
|
|
|
from functools import partial |
|
from typing import Any, Callable, List, Optional, Type, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch import Tensor |
|
from torchvision.models._api import Weights, WeightsEnum, register_model |
|
from torchvision.models._meta import _IMAGENET_CATEGORIES |
|
from torchvision.models._utils import _ovewrite_named_param, handle_legacy_interface |
|
from torchvision.transforms._presets import ImageClassification |
|
from torchvision.utils import _log_api_usage_once |
|
|
|
__all__ = [ |
|
"ResNet", |
|
"ResNet18_Weights", |
|
"ResNet34_Weights", |
|
"ResNet50_Weights", |
|
"ResNet101_Weights", |
|
"ResNet152_Weights", |
|
"ResNeXt50_32X4D_Weights", |
|
"ResNeXt101_32X8D_Weights", |
|
"ResNeXt101_64X4D_Weights", |
|
"Wide_ResNet50_2_Weights", |
|
"Wide_ResNet101_2_Weights", |
|
"resnet18", |
|
"resnet34", |
|
"resnet50", |
|
"resnet101", |
|
"resnet152", |
|
"resnext50_32x4d", |
|
"resnext101_32x8d", |
|
"resnext101_64x4d", |
|
"wide_resnet50_2", |
|
"wide_resnet101_2", |
|
] |
|
|
|
|
|
def conv3x3( |
|
in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1 |
|
) -> nn.Conv2d: |
|
"""3x3 convolution with padding""" |
|
return nn.Conv2d( |
|
in_planes, |
|
out_planes, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=dilation, |
|
groups=groups, |
|
bias=False, |
|
dilation=dilation, |
|
) |
|
|
|
|
|
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d: |
|
"""1x1 convolution""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion: int = 1 |
|
|
|
def __init__( |
|
self, |
|
inplanes: int, |
|
planes: int, |
|
stride: int = 1, |
|
downsample: Optional[nn.Module] = None, |
|
groups: int = 1, |
|
base_width: int = 64, |
|
dilation: int = 1, |
|
norm_layer: Optional[Callable[..., nn.Module]] = None, |
|
) -> None: |
|
super().__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
if groups != 1 or base_width != 64: |
|
raise ValueError("BasicBlock only supports groups=1 and base_width=64") |
|
if dilation > 1: |
|
raise NotImplementedError("Dilation > 1 not supported in BasicBlock") |
|
|
|
self.conv1 = conv3x3(inplanes, planes, stride) |
|
self.bn1 = norm_layer(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv3x3(planes, planes) |
|
self.bn2 = norm_layer(planes) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
|
|
|
|
|
|
|
|
|
|
|
|
expansion: int = 4 |
|
|
|
def __init__( |
|
self, |
|
inplanes: int, |
|
planes: int, |
|
stride: int = 1, |
|
downsample: Optional[nn.Module] = None, |
|
groups: int = 1, |
|
base_width: int = 64, |
|
dilation: int = 1, |
|
norm_layer: Optional[Callable[..., nn.Module]] = None, |
|
) -> None: |
|
super().__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
width = int(planes * (base_width / 64.0)) * groups |
|
|
|
self.conv1 = conv1x1(inplanes, width) |
|
self.bn1 = norm_layer(width) |
|
self.conv2 = conv3x3(width, width, stride, groups, dilation) |
|
self.bn2 = norm_layer(width) |
|
self.conv3 = conv1x1(width, planes * self.expansion) |
|
self.bn3 = norm_layer(planes * self.expansion) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class ResNet(nn.Module): |
|
def __init__( |
|
self, |
|
block: Type[Union[BasicBlock, Bottleneck]], |
|
layers: List[int], |
|
num_classes: int = 1000, |
|
zero_init_residual: bool = False, |
|
groups: int = 1, |
|
width_per_group: int = 64, |
|
replace_stride_with_dilation: Optional[List[bool]] = None, |
|
norm_layer: Optional[Callable[..., nn.Module]] = None, |
|
) -> None: |
|
super().__init__() |
|
_log_api_usage_once(self) |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
self._norm_layer = norm_layer |
|
|
|
self.inplanes = 64 |
|
self.dilation = 1 |
|
if replace_stride_with_dilation is None: |
|
|
|
|
|
replace_stride_with_dilation = [False, False, False] |
|
if len(replace_stride_with_dilation) != 3: |
|
raise ValueError( |
|
"replace_stride_with_dilation should be None " |
|
f"or a 3-element tuple, got {replace_stride_with_dilation}" |
|
) |
|
self.groups = groups |
|
self.base_width = width_per_group |
|
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) |
|
self.bn1 = norm_layer(self.inplanes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
self.layer1 = self._make_layer(block, 64, layers[0]) |
|
self.layer2 = self._make_layer( |
|
block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0] |
|
) |
|
self.layer3 = self._make_layer( |
|
block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1] |
|
) |
|
self.layer4 = self._make_layer( |
|
block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2] |
|
) |
|
|
|
self.avgpool = nn.AvgPool2d(kernel_size=7, stride=1, padding=0) |
|
self.fc = nn.Linear(512 * block.expansion, num_classes) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") |
|
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
|
|
|
|
if zero_init_residual: |
|
for m in self.modules(): |
|
if isinstance(m, Bottleneck) and m.bn3.weight is not None: |
|
nn.init.constant_(m.bn3.weight, 0) |
|
elif isinstance(m, BasicBlock) and m.bn2.weight is not None: |
|
nn.init.constant_(m.bn2.weight, 0) |
|
|
|
def _make_layer( |
|
self, |
|
block: Type[Union[BasicBlock, Bottleneck]], |
|
planes: int, |
|
blocks: int, |
|
stride: int = 1, |
|
dilate: bool = False, |
|
) -> nn.Sequential: |
|
norm_layer = self._norm_layer |
|
downsample = None |
|
previous_dilation = self.dilation |
|
if dilate: |
|
self.dilation *= stride |
|
stride = 1 |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
conv1x1(self.inplanes, planes * block.expansion, stride), |
|
norm_layer(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append( |
|
block( |
|
self.inplanes, |
|
planes, |
|
stride, |
|
downsample, |
|
self.groups, |
|
self.base_width, |
|
previous_dilation, |
|
norm_layer, |
|
) |
|
) |
|
self.inplanes = planes * block.expansion |
|
for _ in range(1, blocks): |
|
layers.append( |
|
block( |
|
self.inplanes, |
|
planes, |
|
groups=self.groups, |
|
base_width=self.base_width, |
|
dilation=self.dilation, |
|
norm_layer=norm_layer, |
|
) |
|
) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _forward_impl(self, x: Tensor) -> Tensor: |
|
|
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.maxpool(x) |
|
|
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
|
|
x = self.avgpool(x) |
|
x = torch.flatten(x, 1) |
|
x = self.fc(x) |
|
|
|
return x |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
return self._forward_impl(x) |
|
|
|
|
|
def _resnet( |
|
block: Type[Union[BasicBlock, Bottleneck]], |
|
layers: List[int], |
|
weights: Optional[WeightsEnum], |
|
progress: bool, |
|
**kwargs: Any, |
|
) -> ResNet: |
|
if weights is not None: |
|
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) |
|
|
|
model = ResNet(block, layers, **kwargs) |
|
|
|
if weights is not None: |
|
model.load_state_dict(weights.get_state_dict(progress=progress)) |
|
|
|
return model |
|
|
|
|
|
_COMMON_META = { |
|
"min_size": (1, 1), |
|
"categories": _IMAGENET_CATEGORIES, |
|
} |
|
|
|
|
|
class ResNet18_Weights(WeightsEnum): |
|
IMAGENET1K_V1 = Weights( |
|
url="https://download.pytorch.org/models/resnet18-f37072fd.pth", |
|
transforms=partial(ImageClassification, crop_size=224), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 11689512, |
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 69.758, |
|
"acc@5": 89.078, |
|
} |
|
}, |
|
"_ops": 1.814, |
|
"_file_size": 44.661, |
|
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_V1 |
|
|
|
|
|
class ResNet34_Weights(WeightsEnum): |
|
IMAGENET1K_V1 = Weights( |
|
url="https://download.pytorch.org/models/resnet34-b627a593.pth", |
|
transforms=partial(ImageClassification, crop_size=224), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 21797672, |
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 73.314, |
|
"acc@5": 91.420, |
|
} |
|
}, |
|
"_ops": 3.664, |
|
"_file_size": 83.275, |
|
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_V1 |
|
|
|
|
|
class ResNet50_Weights(WeightsEnum): |
|
IMAGENET1K_V1 = Weights( |
|
url="https://download.pytorch.org/models/resnet50-0676ba61.pth", |
|
transforms=partial(ImageClassification, crop_size=224), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 25557032, |
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 76.130, |
|
"acc@5": 92.862, |
|
} |
|
}, |
|
"_ops": 4.089, |
|
"_file_size": 97.781, |
|
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", |
|
}, |
|
) |
|
IMAGENET1K_V2 = Weights( |
|
url="https://download.pytorch.org/models/resnet50-11ad3fa6.pth", |
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 25557032, |
|
"recipe": "https://github.com/pytorch/vision/issues/3995#issuecomment-1013906621", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 80.858, |
|
"acc@5": 95.434, |
|
} |
|
}, |
|
"_ops": 4.089, |
|
"_file_size": 97.79, |
|
"_docs": """ |
|
These weights improve upon the results of the original paper by using TorchVision's `new training recipe |
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. |
|
""", |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_V2 |
|
|
|
|
|
class ResNet101_Weights(WeightsEnum): |
|
IMAGENET1K_V1 = Weights( |
|
url="https://download.pytorch.org/models/resnet101-63fe2227.pth", |
|
transforms=partial(ImageClassification, crop_size=224), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 44549160, |
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 77.374, |
|
"acc@5": 93.546, |
|
} |
|
}, |
|
"_ops": 7.801, |
|
"_file_size": 170.511, |
|
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", |
|
}, |
|
) |
|
IMAGENET1K_V2 = Weights( |
|
url="https://download.pytorch.org/models/resnet101-cd907fc2.pth", |
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 44549160, |
|
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 81.886, |
|
"acc@5": 95.780, |
|
} |
|
}, |
|
"_ops": 7.801, |
|
"_file_size": 170.53, |
|
"_docs": """ |
|
These weights improve upon the results of the original paper by using TorchVision's `new training recipe |
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. |
|
""", |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_V2 |
|
|
|
|
|
class ResNet152_Weights(WeightsEnum): |
|
IMAGENET1K_V1 = Weights( |
|
url="https://download.pytorch.org/models/resnet152-394f9c45.pth", |
|
transforms=partial(ImageClassification, crop_size=224), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 60192808, |
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 78.312, |
|
"acc@5": 94.046, |
|
} |
|
}, |
|
"_ops": 11.514, |
|
"_file_size": 230.434, |
|
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", |
|
}, |
|
) |
|
IMAGENET1K_V2 = Weights( |
|
url="https://download.pytorch.org/models/resnet152-f82ba261.pth", |
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 60192808, |
|
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 82.284, |
|
"acc@5": 96.002, |
|
} |
|
}, |
|
"_ops": 11.514, |
|
"_file_size": 230.474, |
|
"_docs": """ |
|
These weights improve upon the results of the original paper by using TorchVision's `new training recipe |
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. |
|
""", |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_V2 |
|
|
|
|
|
class ResNeXt50_32X4D_Weights(WeightsEnum): |
|
IMAGENET1K_V1 = Weights( |
|
url="https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth", |
|
transforms=partial(ImageClassification, crop_size=224), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 25028904, |
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnext", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 77.618, |
|
"acc@5": 93.698, |
|
} |
|
}, |
|
"_ops": 4.23, |
|
"_file_size": 95.789, |
|
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", |
|
}, |
|
) |
|
IMAGENET1K_V2 = Weights( |
|
url="https://download.pytorch.org/models/resnext50_32x4d-1a0047aa.pth", |
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 25028904, |
|
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 81.198, |
|
"acc@5": 95.340, |
|
} |
|
}, |
|
"_ops": 4.23, |
|
"_file_size": 95.833, |
|
"_docs": """ |
|
These weights improve upon the results of the original paper by using TorchVision's `new training recipe |
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. |
|
""", |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_V2 |
|
|
|
|
|
class ResNeXt101_32X8D_Weights(WeightsEnum): |
|
IMAGENET1K_V1 = Weights( |
|
url="https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth", |
|
transforms=partial(ImageClassification, crop_size=224), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 88791336, |
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnext", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 79.312, |
|
"acc@5": 94.526, |
|
} |
|
}, |
|
"_ops": 16.414, |
|
"_file_size": 339.586, |
|
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", |
|
}, |
|
) |
|
IMAGENET1K_V2 = Weights( |
|
url="https://download.pytorch.org/models/resnext101_32x8d-110c445d.pth", |
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 88791336, |
|
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 82.834, |
|
"acc@5": 96.228, |
|
} |
|
}, |
|
"_ops": 16.414, |
|
"_file_size": 339.673, |
|
"_docs": """ |
|
These weights improve upon the results of the original paper by using TorchVision's `new training recipe |
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. |
|
""", |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_V2 |
|
|
|
|
|
class ResNeXt101_64X4D_Weights(WeightsEnum): |
|
IMAGENET1K_V1 = Weights( |
|
url="https://download.pytorch.org/models/resnext101_64x4d-173b62eb.pth", |
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 83455272, |
|
"recipe": "https://github.com/pytorch/vision/pull/5935", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 83.246, |
|
"acc@5": 96.454, |
|
} |
|
}, |
|
"_ops": 15.46, |
|
"_file_size": 319.318, |
|
"_docs": """ |
|
These weights were trained from scratch by using TorchVision's `new training recipe |
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. |
|
""", |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_V1 |
|
|
|
|
|
class Wide_ResNet50_2_Weights(WeightsEnum): |
|
IMAGENET1K_V1 = Weights( |
|
url="https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth", |
|
transforms=partial(ImageClassification, crop_size=224), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 68883240, |
|
"recipe": "https://github.com/pytorch/vision/pull/912#issue-445437439", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 78.468, |
|
"acc@5": 94.086, |
|
} |
|
}, |
|
"_ops": 11.398, |
|
"_file_size": 131.82, |
|
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", |
|
}, |
|
) |
|
IMAGENET1K_V2 = Weights( |
|
url="https://download.pytorch.org/models/wide_resnet50_2-9ba9bcbe.pth", |
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 68883240, |
|
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 81.602, |
|
"acc@5": 95.758, |
|
} |
|
}, |
|
"_ops": 11.398, |
|
"_file_size": 263.124, |
|
"_docs": """ |
|
These weights improve upon the results of the original paper by using TorchVision's `new training recipe |
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. |
|
""", |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_V2 |
|
|
|
|
|
class Wide_ResNet101_2_Weights(WeightsEnum): |
|
IMAGENET1K_V1 = Weights( |
|
url="https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth", |
|
transforms=partial(ImageClassification, crop_size=224), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 126886696, |
|
"recipe": "https://github.com/pytorch/vision/pull/912#issue-445437439", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 78.848, |
|
"acc@5": 94.284, |
|
} |
|
}, |
|
"_ops": 22.753, |
|
"_file_size": 242.896, |
|
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", |
|
}, |
|
) |
|
IMAGENET1K_V2 = Weights( |
|
url="https://download.pytorch.org/models/wide_resnet101_2-d733dc28.pth", |
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 126886696, |
|
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 82.510, |
|
"acc@5": 96.020, |
|
} |
|
}, |
|
"_ops": 22.753, |
|
"_file_size": 484.747, |
|
"_docs": """ |
|
These weights improve upon the results of the original paper by using TorchVision's `new training recipe |
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. |
|
""", |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_V2 |
|
|
|
|
|
@register_model() |
|
@handle_legacy_interface(weights=("pretrained", ResNet18_Weights.IMAGENET1K_V1)) |
|
def resnet18_custom( |
|
*, weights: Optional[ResNet18_Weights] = None, progress: bool = True, **kwargs: Any |
|
) -> ResNet: |
|
"""ResNet-18 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`__. |
|
|
|
Args: |
|
weights (:class:`~torchvision.models.ResNet18_Weights`, optional): The |
|
pre-trained weights to use. See |
|
:class:`~torchvision.models.ResNet18_Weights` below for |
|
more details, and possible values. By default, no pre-trained |
|
weights are used. |
|
progress (bool, optional): If True, displays a progress bar of the |
|
download to stderr. Default is True. |
|
**kwargs: parameters passed to the ``torchvision.models.resnet.ResNet`` |
|
base class. Please refer to the `source code |
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_ |
|
for more details about this class. |
|
|
|
.. autoclass:: torchvision.models.ResNet18_Weights |
|
:members: |
|
""" |
|
weights = ResNet18_Weights.verify(weights) |
|
|
|
return _resnet(BasicBlock, [2, 2, 2, 2], weights, progress, **kwargs) |