Spaces:
Building
on
CPU Upgrade
Building
on
CPU Upgrade
from pathlib import Path | |
import numpy as np | |
import gradio as gr | |
import requests | |
import json | |
from transformers import ViTImageProcessor, ViTModel | |
from PIL import Image | |
# Store the server's URL | |
SERVER_URL = "https://affordable-prot-bind-clarke.trycloudflare.com/" | |
CURRENT_DIR = Path(__file__).parent | |
DEPLOYMENT_DIR = CURRENT_DIR / "deployment_files" | |
KEYS_DIR = DEPLOYMENT_DIR / ".fhe_keys" | |
CLIENT_DIR = DEPLOYMENT_DIR / "client_dir" | |
SERVER_DIR = DEPLOYMENT_DIR / "server_dir" | |
USER_ID = "user_id" | |
EXAMPLE_CLINICAL_TRIAL_LINK = "https://www.trials4us.co.uk/ongoing-clinical-trials/recruiting-healthy-adults-c23026?_gl=1*1ysp815*_up*MQ..&gclid=Cj0KCQjwr9m3BhDHARIsANut04bHqi5zE3sjS3f8JK2WRN3YEgY4bTfWbvTdZTxkUTSISxXX5ZWL7qEaAowwEALw_wcB&gbraid=0AAAAAD3Qci2k_3IERmM6U1FGDuYVayZWH" | |
# Define possible categories for fields without predefined categories | |
additional_categories = { | |
"Gender": ["Male", "Female", "Other"], | |
"Ethnicity": ["White", "Black or African American", "Asian", "American Indian or Alaska Native", "Native Hawaiian or Other Pacific Islander", "Other"], | |
"Geographic_Location": ["North America", "South America", "Europe", "Asia", "Africa", "Australia", "Antarctica"], | |
"Smoking_Status": ["Never", "Former", "Current"], | |
"Diagnoses_ICD10": ["Actinic keratosis", "Melanoma", "Dermatofibroma", "Vascular lesion","None"], | |
"Medications": ["Metformin", "Lisinopril", "Atorvastatin", "Amlodipine", "Omeprazole", "Simvastatin", "Levothyroxine", "None"], | |
"Allergies": ["Penicillin", "Peanuts", "Shellfish", "Latex", "Bee stings", "None"], | |
"Previous_Treatments": ["Chemotherapy", "Radiation Therapy", "Surgery", "Physical Therapy", "Immunotherapy", "None"], | |
"Alcohol_Consumption": ["None", "Occasionally", "Regularly", "Heavy"], | |
"Exercise_Habits": ["Sedentary", "Light", "Moderate", "Active", "Very Active"], | |
"Diet": ["Omnivore", "Vegetarian", "Vegan", "Pescatarian", "Keto", "Mediterranean"], | |
"Functional_Status": ["Independent", "Assisted", "Dependent"], | |
"Previous_Trial_Participation": ["Yes", "No"] | |
} | |
# Define the input components for the form | |
age_input = gr.Slider(minimum=18, maximum=100, label="Age ", step=1, value=30) | |
gender_input = gr.Radio(choices=additional_categories["Gender"], label="Gender", value="Male") | |
ethnicity_input = gr.Radio(choices=additional_categories["Ethnicity"], label="Ethnicity", value="White") | |
geographic_location_input = gr.Radio(choices=additional_categories["Geographic_Location"], label="Geographic Location", value="North America") | |
medications_input = gr.CheckboxGroup(choices=additional_categories["Medications"], label="Medications", value=["Metformin"]) | |
allergies_input = gr.CheckboxGroup(choices=additional_categories["Allergies"], label="Allergies", value=["Peanuts"]) | |
previous_treatments_input = gr.CheckboxGroup(choices=additional_categories["Previous_Treatments"], label="Previous Treatments", value=["None"]) | |
blood_glucose_level_input = gr.Slider(minimum=0, maximum=300, label="Blood Glucose Level", step=1, value=100) | |
blood_pressure_systolic_input = gr.Slider(minimum=80, maximum=200, label="Blood Pressure (Systolic)", step=1, value=120) | |
blood_pressure_diastolic_input = gr.Slider(minimum=40, maximum=120, label="Blood Pressure (Diastolic)", step=1, value=80) | |
bmi_input = gr.Slider(minimum=10, maximum=50, label="BMI ", step=1, value=20) | |
smoking_status_input = gr.Radio(choices=additional_categories["Smoking_Status"], label="Smoking Status", value="Never") | |
alcohol_consumption_input = gr.Radio(choices=additional_categories["Alcohol_Consumption"], label="Alcohol Consumption", value="None") | |
exercise_habits_input = gr.Radio(choices=additional_categories["Exercise_Habits"], label="Exercise Habits", value="Sedentary") | |
diet_input = gr.Radio(choices=additional_categories["Diet"], label="Diet", value="Omnivore") | |
condition_severity_input = gr.Slider(minimum=1, maximum=10, label="Condition Severity", step=1, value=5) | |
functional_status_input = gr.Radio(choices=additional_categories["Functional_Status"], label="Functional Status", value="Independent") | |
previous_trial_participation_input = gr.Radio(choices=additional_categories["Previous_Trial_Participation"], label="Previous Trial Participation", value="Yes") | |
# def encrypt_array(user_symptoms: np.ndarray, user_id: str) -> bytes: | |
# """ | |
# Encrypt the user symptoms vector. | |
# Args: | |
# user_symptoms (np.ndarray): The vector of symptoms provided by the user. | |
# user_id (str): The current user's ID. | |
# Returns: | |
# bytes: Encrypted and serialized symptoms. | |
# """ | |
# # Retrieve the client API | |
# client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}") | |
# client.load() | |
# # Ensure the symptoms are properly formatted as an array | |
# user_symptoms = np.array(user_symptoms).reshape(1, -1) | |
# # Encrypt and serialize the symptoms | |
# encrypted_quantized_user_symptoms = client.quantize_encrypt_serialize(user_symptoms) | |
# # Ensure the encryption process returned bytes | |
# assert isinstance(encrypted_quantized_user_symptoms, bytes) | |
# # Save the encrypted data to a file (optional) | |
# encrypted_input_path = KEYS_DIR / f"{user_id}/encrypted_input" | |
# with encrypted_input_path.open("wb") as f: | |
# f.write(encrypted_quantized_user_symptoms) | |
# # Return the encrypted data | |
# return encrypted_quantized_user_symptoms | |
# def decrypt_result(encrypted_answer: bytes, user_id: str) -> bool: | |
""" | |
Decrypt the encrypted result. | |
Args: | |
encrypted_answer (bytes): The encrypted result. | |
user_id (str): The current user's ID. | |
Returns: | |
bool: The decrypted result. | |
""" | |
# Retrieve the client API | |
# client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}") | |
# client.load() | |
# Decrypt the result | |
# decrypted_result = client.decrypt_deserialize(encrypted_answer) | |
# # Return the decrypted result | |
# return decrypted_result | |
def encode_categorical_data(data): | |
categories = ["Gender", "Ethnicity", "Geographic_Location", "Diagnoses_ICD10", "Medications", "Allergies", "Previous_Treatments", "Smoking_Status", "Alcohol_Consumption", "Exercise_Habits", "Diet", "Functional_Status", "Previous_Trial_Participation"] | |
encoded_data = [] | |
for i in range(len(categories)): | |
sub_cats = additional_categories[categories[i]] | |
if data[i] in sub_cats: | |
encoded_data.append(sub_cats.index(data[i]) + 1) | |
else: | |
encoded_data.append(0) | |
return encoded_data | |
def clear_data_to_json(data): | |
print(data) | |
patient_data = { | |
"model_names": ["second_model"], | |
"patient": { | |
"Age": data.get("age", 30), | |
"Blood_Glucose_Level": data.get("blood_glucose_level", 0), | |
"Blood_Pressure_Systolic": data.get("blood_pressure_systolic", 0), | |
"Blood_Pressure_Diastolic": data.get("blood_pressure_diastolic", 0), | |
"BMI": data.get("bmi", 0), | |
"Condition_Severity": data.get("condition_severity", 0), | |
"Gender": data.get("Gender", 0), | |
"Ethnicity": data.get("Ethnicity", 0), | |
"Geographic_Location": data.get("Geographic_Location", 0), | |
"Smoking_Status": data.get("Smoking_Status", 0), | |
"Diagnoses_ICD10": data.get("Diagnoses_ICD10", 0), | |
"Medications": data.get("Medications", 0), | |
"Allergies": data.get("Allergies", 0), | |
"Previous_Treatments": data.get("Previous_Treatments", 0), | |
"Alcohol_Consumption": data.get("Alcohol_Consumption", 0), | |
"Exercise_Habits": data.get("Exercise_Habits", 0), | |
"Diet": data.get("Diet", 0), | |
"Functional_Status": data.get("Functional_Status", 0), | |
"Previous_Trial_Participation": data.get("Previous_Trial_Participation", 0) | |
} | |
} | |
return patient_data | |
def process_patient_data(age, gender, ethnicity, geographic_location, diagnoses_icd10, medications, allergies, previous_treatments, blood_glucose_level, blood_pressure_systolic, blood_pressure_diastolic, bmi, smoking_status, alcohol_consumption, exercise_habits, diet, condition_severity, functional_status, previous_trial_participation): | |
# Encode the data | |
categorical_data = [gender, ethnicity, geographic_location, diagnoses_icd10, medications, allergies, previous_treatments, smoking_status, alcohol_consumption, exercise_habits, diet, functional_status, previous_trial_participation] | |
print(f"Categorical data: {categorical_data}") | |
encoded_categorical_data = encode_categorical_data(categorical_data) | |
numerical_data = np.array([age, blood_glucose_level, blood_pressure_systolic, blood_pressure_diastolic, bmi, condition_severity]) | |
print(f"Numerical data: {numerical_data}") | |
print(f"One-hot encoded data: {encoded_categorical_data}") | |
combined_data = np.hstack((numerical_data, encoded_categorical_data)) | |
ordered_categories = ["Gender", "Ethnicity", "Geographic_Location", "Diagnoses_ICD10", "Medications", "Allergies", "Previous_Treatments", "Smoking_Status", "Alcohol_Consumption", "Exercise_Habits", "Diet", "Functional_Status", "Previous_Trial_Participation"] | |
zipped_data = zip(ordered_categories, encoded_categorical_data) | |
# Convert the zipped data to a dictionary | |
encoded_categorical_dict = {category: value for category, value in zipped_data} | |
# Convert the data to JSON | |
json_data = clear_data_to_json({ | |
"age": age, | |
"blood_glucose_level": blood_glucose_level, | |
"blood_pressure_systolic": blood_pressure_systolic, | |
"blood_pressure_diastolic": blood_pressure_diastolic, | |
"bmi": bmi, | |
"condition_severity": condition_severity, | |
**encoded_categorical_dict | |
}) | |
print(f"JSON data: {json_data}") | |
print(f"Combined data: {combined_data}") | |
# encrypted_array = encrypt_array(combined_data, "user_id") | |
# Send the data to the server | |
url = SERVER_URL + "inference/clear-match" | |
headers = {"Content-Type": "application/json", "X-API-KEY": "secret"} | |
response = requests.post(url, data=json_data, headers=headers) | |
# Check if the data was sent successfully | |
if response.status_code == 200: | |
print("Data sent successfully.") | |
else: | |
print(f"Error sending data. Status code: {response.status_code}") | |
# return f"**[Possible Trial Link]({EXAMPLE_CLINICAL_TRIAL_LINK})**" | |
# Decrypt the result | |
# decrypted_result = decrypt_result(response.content, USER_ID) | |
# decrypted_result = None | |
try: | |
decrypted_result = response.json() | |
print(f"Decrypted result: {decrypted_result}") | |
except json.JSONDecodeError as e: | |
print(f"Error decrypting result: Invalid JSON. {e}") | |
decrypted_result = False | |
return "There was an error processing the data." | |
except Exception as e: | |
print(f"An error occurred: {e}") | |
decrypted_result = False | |
return "There was an error processing the data." | |
else: | |
print("Json parsed successfully.") | |
# If the answer is True, return the link | |
if decrypted_result: | |
return f"**[Possible Trial Link]({EXAMPLE_CLINICAL_TRIAL_LINK})**" | |
else: | |
return "There was an error processing the data." | |
# Define the function to handle image upload | |
def handle_image_upload(image): | |
url = 'http://images.cocodataset.org/val2017/000000039769.jpg' | |
image = Image.open(requests.get(url, stream=True).raw) | |
processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224-in21k') | |
model = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k') | |
inputs = processor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
pooler_output = outputs.pooler_output[0] | |
sclaed_output = 127 + 127 * pooler_output / pooler_output.abs().max() | |
sclaed_output = sclaed_output.to(int) | |
url = "/inference/clear-diagnosis" | |
return ["Melanoma", "Vascular lesion"] | |
# Create the Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Patient Data Criteria Form\nPlease fill in the criteria for the type of patients you are looking for.") | |
with gr.Column(): | |
with gr.Group(): | |
age_input.render() | |
gender_input.render() | |
ethnicity_input.render() | |
geographic_location_input.render() | |
medications_input.render() | |
allergies_input.render() | |
previous_treatments_input.render() | |
blood_glucose_level_input.render() | |
blood_pressure_systolic_input.render() | |
blood_pressure_diastolic_input.render() | |
bmi_input.render() | |
smoking_status_input.render() | |
alcohol_consumption_input.render() | |
exercise_habits_input.render() | |
diet_input.render() | |
condition_severity_input.render() | |
functional_status_input.render() | |
previous_trial_participation_input.render() | |
with gr.Group(): | |
diagnoses_icd10_input = gr.CheckboxGroup(choices=additional_categories["Diagnoses_ICD10"], label="Skin Diagnosis", interactive=False) | |
image_input = gr.Image(label="Upload an Image") | |
gr.Button("Upload").click(handle_image_upload, inputs=image_input, outputs=diagnoses_icd10_input) | |
with gr.Group(): | |
output = gr.Markdown("**Server response**") | |
gr.Button("Submit").click(process_patient_data, inputs=[ | |
age_input, gender_input, ethnicity_input, geographic_location_input, diagnoses_icd10_input, medications_input, allergies_input, previous_treatments_input, blood_glucose_level_input, blood_pressure_systolic_input, blood_pressure_diastolic_input, bmi_input, smoking_status_input, alcohol_consumption_input, exercise_habits_input, diet_input, condition_severity_input, functional_status_input, previous_trial_participation_input | |
], outputs=output) | |
# Launch the app | |
demo.launch() |