VaultChem commited on
Commit
c61a090
·
verified ·
1 Parent(s): d73a93b

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +6 -4
  2. server.py +6 -1
app.py CHANGED
@@ -21,7 +21,10 @@ import numpy as np
21
  import pdb
22
  # This repository's directory
23
  REPO_DIR = Path(__file__).parent
24
- subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR)
 
 
 
25
 
26
  # if not exists, create a directory for the FHE keys called .fhe_keys
27
  if not os.path.exists(".fhe_keys"):
@@ -146,7 +149,7 @@ def run_fhe(user_id):
146
  headers = {"Content-type": "application/json"}
147
 
148
  response = requests.post(
149
- "http://localhost:8000/predict",
150
  data=json.dumps(query),
151
  headers=headers,
152
  )
@@ -177,7 +180,6 @@ def decrypt_prediction(user_id):
177
  return predictions
178
 
179
 
180
-
181
  def process_pipeline(test_file):
182
 
183
  eval_key = keygen()
@@ -205,4 +207,4 @@ if __name__ == "__main__":
205
  description="This is a FHE Model",
206
  )
207
 
208
- app.launch(share=True)
 
21
  import pdb
22
  # This repository's directory
23
  REPO_DIR = Path(__file__).parent
24
+ # subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR)
25
+
26
+
27
+ subprocess.Popen(["uvicorn", "server:app", "--port", "3000"], cwd=REPO_DIR)
28
 
29
  # if not exists, create a directory for the FHE keys called .fhe_keys
30
  if not os.path.exists(".fhe_keys"):
 
149
  headers = {"Content-type": "application/json"}
150
 
151
  response = requests.post(
152
+ "http://localhost:3000/predict",
153
  data=json.dumps(query),
154
  headers=headers,
155
  )
 
180
  return predictions
181
 
182
 
 
183
  def process_pipeline(test_file):
184
 
185
  eval_key = keygen()
 
207
  description="This is a FHE Model",
208
  )
209
 
210
+ app.launch() #share=True)
server.py CHANGED
@@ -5,6 +5,8 @@ from concrete.ml.deployment import FHEModelServer
5
  from pydantic import BaseModel
6
  import base64
7
  from pathlib import Path
 
 
8
 
9
  current_dir = Path(__file__).parent
10
 
@@ -35,4 +37,7 @@ def predict(query: PredictRequest):
35
 
36
  # Encode base64 the prediction
37
  encoded_prediction = base64.b64encode(prediction).decode()
38
- return {"encrypted_prediction": encoded_prediction}
 
 
 
 
5
  from pydantic import BaseModel
6
  import base64
7
  from pathlib import Path
8
+ import uvicorn
9
+
10
 
11
  current_dir = Path(__file__).parent
12
 
 
37
 
38
  # Encode base64 the prediction
39
  encoded_prediction = base64.b64encode(prediction).decode()
40
+ return {"encrypted_prediction": encoded_prediction}
41
+
42
+ #if __name__ == "__main__":
43
+ # uvicorn.run(app, host="0.0.0.0", port=3000)