|
"Client-server interface custom implementation for seizure detection models." |
|
|
|
from common import SEIZURE_DETECTION_MODEL_PATH |
|
from concrete import fhe |
|
|
|
from seizure_detection import SeizureDetector |
|
|
|
|
|
class FHEServer: |
|
"""Server interface to run a FHE circuit for seizure detection.""" |
|
|
|
def __init__(self, model_path): |
|
"""Initialize the FHE interface. |
|
|
|
Args: |
|
model_path (Path): The path to the directory where the circuit is saved. |
|
""" |
|
self.model_path = model_path |
|
|
|
|
|
self.server = fhe.Server.load(self.model_path / "server.zip") |
|
|
|
def run(self, serialized_encrypted_image, serialized_evaluation_keys): |
|
"""Run seizure detection on the server over an encrypted image. |
|
|
|
Args: |
|
serialized_encrypted_image (bytes): The encrypted and serialized image. |
|
serialized_evaluation_keys (bytes): The serialized evaluation keys. |
|
|
|
Returns: |
|
bytes: The encrypted boolean output indicating seizure detection. |
|
""" |
|
|
|
encrypted_image = fhe.Value.deserialize(serialized_encrypted_image) |
|
evaluation_keys = fhe.EvaluationKeys.deserialize(serialized_evaluation_keys) |
|
|
|
|
|
encrypted_output = self.server.run(encrypted_image, evaluation_keys=evaluation_keys) |
|
|
|
|
|
serialized_encrypted_output = encrypted_output.serialize() |
|
|
|
return serialized_encrypted_output |
|
|
|
|
|
class FHEDev: |
|
"""Development interface to save and load the seizure detection model.""" |
|
|
|
def __init__(self, seizure_detector, model_path): |
|
"""Initialize the FHE interface. |
|
|
|
Args: |
|
seizure_detector (SeizureDetector): The seizure detection model to use in the FHE interface. |
|
model_path (str): The path to the directory where the circuit is saved. |
|
""" |
|
|
|
self.seizure_detector = seizure_detector |
|
self.model_path = model_path |
|
|
|
self.model_path.mkdir(parents=True, exist_ok=True) |
|
|
|
def save(self): |
|
"""Export all needed artifacts for the client and server interfaces.""" |
|
|
|
assert self.seizure_detector.fhe_circuit is not None, ( |
|
"The model must be compiled before saving it." |
|
) |
|
|
|
|
|
|
|
path_circuit_server = self.model_path / "server.zip" |
|
self.seizure_detector.fhe_circuit.server.save(path_circuit_server, via_mlir=True) |
|
|
|
|
|
path_circuit_client = self.model_path / "client.zip" |
|
self.seizure_detector.fhe_circuit.client.save(path_circuit_client) |
|
|
|
|
|
class FHEClient: |
|
"""Client interface to encrypt and decrypt FHE data associated to a SeizureDetector.""" |
|
|
|
def __init__(self, key_dir=None): |
|
"""Initialize the FHE interface. |
|
|
|
Args: |
|
model_path (Path): The path to the directory where the circuit is saved. |
|
key_dir (Path): The path to the directory where the keys are stored. Default to None. |
|
""" |
|
self.model_path = SEIZURE_DETECTION_MODEL_PATH |
|
self.key_dir = key_dir |
|
|
|
print(self.model_path) |
|
|
|
|
|
assert self.model_path.exists(), f"{self.model_path} does not exist. Please specify a valid path." |
|
|
|
|
|
self.client = fhe.Client.load(self.model_path / "client.zip", self.key_dir) |
|
|
|
|
|
self.seizure_detector = SeizureDetector() |
|
|
|
def generate_private_and_evaluation_keys(self, force=False): |
|
"""Generate the private and evaluation keys. |
|
|
|
Args: |
|
force (bool): If True, regenerate the keys even if they already exist. |
|
""" |
|
self.client.keygen(force) |
|
|
|
def get_serialized_evaluation_keys(self): |
|
"""Get the serialized evaluation keys. |
|
|
|
Returns: |
|
bytes: The evaluation keys. |
|
""" |
|
return self.client.evaluation_keys.serialize() |
|
|
|
def encrypt_serialize(self, input_image): |
|
"""Encrypt and serialize the input image in the clear. |
|
|
|
Args: |
|
input_image (numpy.ndarray): The image to encrypt and serialize. |
|
|
|
Returns: |
|
bytes: The pre-processed, encrypted and serialized image. |
|
""" |
|
|
|
encrypted_image = self.client.encrypt(input_image) |
|
|
|
|
|
serialized_encrypted_image = encrypted_image.serialize() |
|
return serialized_encrypted_image |
|
|
|
def deserialize_decrypt_post_process(self, serialized_encrypted_output): |
|
"""Deserialize, decrypt and post-process the output in the clear. |
|
|
|
Args: |
|
serialized_encrypted_output (bytes): The serialized and encrypted output. |
|
|
|
Returns: |
|
bool: The decrypted and deserialized boolean indicating seizure detection. |
|
""" |
|
|
|
encrypted_output = fhe.Value.deserialize(serialized_encrypted_output) |
|
|
|
|
|
output = self.client.decrypt(encrypted_output) |
|
|
|
|
|
seizure_detected = self.seizure_detector.post_processing(output) |
|
|
|
return seizure_detected |
|
|