Spaces:
Sleeping
Sleeping
Chananchida
commited on
Commit
•
fd37bcf
1
Parent(s):
3b14c3f
Update app.py
Browse files
app.py
CHANGED
@@ -125,25 +125,8 @@ def predict_faiss(model, tokenizer, embedding_model, df, question, index):
|
|
125 |
}
|
126 |
return output
|
127 |
|
128 |
-
def predict(model, tokenizer, embedding_model, df, question, index):
|
129 |
-
t = time.time()
|
130 |
-
question = question.strip()
|
131 |
-
question_vector = get_embeddings(embedding_model, question)
|
132 |
-
question_vector = prepare_sentences_vector([question_vector])
|
133 |
-
distances,indices = faiss_search(index, question_vector)
|
134 |
|
135 |
-
|
136 |
-
Answer = model_pipeline(model, tokenizer, question, df['Context'][indices[0][0]])
|
137 |
-
_time = time.time() - t
|
138 |
-
output = {
|
139 |
-
"user_question": question,
|
140 |
-
"answer": Answer,
|
141 |
-
"totaltime": round(_time, 3),
|
142 |
-
"distance": round(distances[0][0], 4)
|
143 |
-
}
|
144 |
-
return Answer
|
145 |
-
|
146 |
-
def predict_test(model, tokenizer, embedding_model, df, question, index): # sent_tokenize pythainlp
|
147 |
t = time.time()
|
148 |
question = question.strip()
|
149 |
question_vector = get_embeddings(embedding_model, question)
|
@@ -206,12 +189,9 @@ def highlight_text(text, start_index, end_index):
|
|
206 |
highlighted_text += "</mark>"
|
207 |
return highlighted_text
|
208 |
|
209 |
-
def chat_interface_before(question, history):
|
210 |
-
response = predict(model, tokenizer, embedding_model, df, question, index)
|
211 |
-
return response
|
212 |
|
213 |
-
def
|
214 |
-
response =
|
215 |
highlighted_answer = highlight_text(response["answer"], response["highlight_start"], response["highlight_end"])
|
216 |
return highlighted_answer
|
217 |
|
@@ -223,13 +203,10 @@ examples=[
|
|
223 |
'อยากทราบความถี่ในการดึงข้อมูลของ DXT360 บน Twitter',
|
224 |
# 'ช่องทางติดตามข่าวสารของเรา',
|
225 |
]
|
226 |
-
demo_before = gr.ChatInterface(fn=chat_interface_before,
|
227 |
-
examples=examples)
|
228 |
|
229 |
-
|
230 |
examples=examples)
|
231 |
|
232 |
-
interface = gr.TabbedInterface([demo_before, demo_after], ["Before", "After"])
|
233 |
|
234 |
if __name__ == "__main__":
|
235 |
# Load your model, tokenizer, data, and index here...
|
|
|
125 |
}
|
126 |
return output
|
127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
+
def predict(model, tokenizer, embedding_model, df, question, index): # sent_tokenize pythainlp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
t = time.time()
|
131 |
question = question.strip()
|
132 |
question_vector = get_embeddings(embedding_model, question)
|
|
|
189 |
highlighted_text += "</mark>"
|
190 |
return highlighted_text
|
191 |
|
|
|
|
|
|
|
192 |
|
193 |
+
def chat_interface(question, history):
|
194 |
+
response = predict(model, tokenizer, embedding_model, df, question, index)
|
195 |
highlighted_answer = highlight_text(response["answer"], response["highlight_start"], response["highlight_end"])
|
196 |
return highlighted_answer
|
197 |
|
|
|
203 |
'อยากทราบความถี่ในการดึงข้อมูลของ DXT360 บน Twitter',
|
204 |
# 'ช่องทางติดตามข่าวสารของเรา',
|
205 |
]
|
|
|
|
|
206 |
|
207 |
+
interface = gr.ChatInterface(fn=chat_interface,
|
208 |
examples=examples)
|
209 |
|
|
|
210 |
|
211 |
if __name__ == "__main__":
|
212 |
# Load your model, tokenizer, data, and index here...
|