|
import gradio as gr |
|
import torch |
|
import torch.nn as nn |
|
import torchvision.transforms as transforms |
|
from PIL import Image |
|
|
|
norm_layer = nn.InstanceNorm2d |
|
|
|
|
|
class ResidualBlock(nn.Module): |
|
def __init__(self, in_features): |
|
super(ResidualBlock, self).__init__() |
|
|
|
conv_block = [ |
|
nn.ReflectionPad2d(1), |
|
nn.Conv2d(in_features, in_features, 3), |
|
norm_layer(in_features), |
|
nn.ReLU(inplace=True), |
|
nn.ReflectionPad2d(1), |
|
nn.Conv2d(in_features, in_features, 3), |
|
norm_layer(in_features), |
|
] |
|
|
|
self.conv_block = nn.Sequential(*conv_block) |
|
|
|
def forward(self, x): |
|
return x + self.conv_block(x) |
|
|
|
|
|
class Generator(nn.Module): |
|
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True): |
|
super(Generator, self).__init__() |
|
|
|
|
|
model0 = [ |
|
nn.ReflectionPad2d(3), |
|
nn.Conv2d(input_nc, 64, 7), |
|
norm_layer(64), |
|
nn.ReLU(inplace=True), |
|
] |
|
self.model0 = nn.Sequential(*model0) |
|
|
|
|
|
model1 = [] |
|
in_features = 64 |
|
out_features = in_features * 2 |
|
for _ in range(2): |
|
model1 += [ |
|
nn.Conv2d(in_features, out_features, 3, stride=2, padding=1), |
|
norm_layer(out_features), |
|
nn.ReLU(inplace=True), |
|
] |
|
in_features = out_features |
|
out_features = in_features * 2 |
|
self.model1 = nn.Sequential(*model1) |
|
|
|
model2 = [] |
|
|
|
for _ in range(n_residual_blocks): |
|
model2 += [ResidualBlock(in_features)] |
|
self.model2 = nn.Sequential(*model2) |
|
|
|
|
|
model3 = [] |
|
out_features = in_features // 2 |
|
for _ in range(2): |
|
model3 += [ |
|
nn.ConvTranspose2d( |
|
in_features, out_features, 3, stride=2, padding=1, output_padding=1 |
|
), |
|
norm_layer(out_features), |
|
nn.ReLU(inplace=True), |
|
] |
|
in_features = out_features |
|
out_features = in_features // 2 |
|
self.model3 = nn.Sequential(*model3) |
|
|
|
|
|
model4 = [nn.ReflectionPad2d(3), nn.Conv2d(64, output_nc, 7)] |
|
if sigmoid: |
|
model4 += [nn.Sigmoid()] |
|
|
|
self.model4 = nn.Sequential(*model4) |
|
|
|
def forward(self, x, cond=None): |
|
out = self.model0(x) |
|
out = self.model1(out) |
|
out = self.model2(out) |
|
out = self.model3(out) |
|
out = self.model4(out) |
|
|
|
return out |
|
|
|
|
|
model1 = Generator(3, 1, 3) |
|
model1.load_state_dict(torch.load("model.pth", map_location=torch.device("cpu"))) |
|
model1.eval() |
|
|
|
model2 = Generator(3, 1, 3) |
|
model2.load_state_dict(torch.load("model2.pth", map_location=torch.device("cpu"))) |
|
model2.eval() |
|
|
|
|
|
def predict(input_img, ver): |
|
input_img = Image.open(input_img) |
|
transform = transforms.Compose( |
|
[transforms.Resize(1080, Image.BICUBIC), transforms.ToTensor()] |
|
) |
|
input_img = transform(input_img) |
|
input_img = torch.unsqueeze(input_img, 0) |
|
|
|
drawing = 0 |
|
with torch.no_grad(): |
|
if ver == "Simple Lines": |
|
drawing = model2(input_img)[0].detach() |
|
else: |
|
drawing = model1(input_img)[0].detach() |
|
|
|
drawing = transforms.ToPILImage()(drawing) |
|
|
|
|
|
source = drawing.split() |
|
|
|
W = 0 |
|
|
|
|
|
White = source[W].point(lambda i: darken_pixel(i)) |
|
|
|
im_output = Image.merge(im_output.mode, (White)) |
|
return im_output |
|
|
|
|
|
def darken_pixel(pixel): |
|
constant = 2.0 |
|
if pixel < 200: |
|
return pixel / constant |
|
else: |
|
return pixel |
|
|
|
|
|
title = "Image to Line Drawings - Complex and Simple Portraits and Landscapes" |
|
examples = [ |
|
["01.jpg", "Complex Lines"], |
|
["02.jpg", "Simple Lines"], |
|
["03.jpg", "Simple Lines"], |
|
["04.jpg", "Simple Lines"], |
|
["05.jpg", "Simple Lines"], |
|
] |
|
|
|
iface = gr.Interface( |
|
predict, |
|
[ |
|
gr.inputs.Image(type="filepath"), |
|
gr.inputs.Radio( |
|
["Complex Lines", "Simple Lines"], |
|
type="value", |
|
default="Simple Lines", |
|
label="version", |
|
), |
|
], |
|
gr.outputs.Image(type="pil"), |
|
title=title, |
|
examples=examples, |
|
) |
|
|
|
iface.launch() |
|
|