|
from retinaface.anchor import decode_tf, prior_box_tf |
|
import tensorflow as tf |
|
|
|
|
|
def extract_detections(bbox_regressions, landm_regressions, classifications, image_sizes, iou_th=0.4, score_th=0.02): |
|
min_sizes = [[16, 32], [64, 128], [256, 512]] |
|
steps = [8, 16, 32] |
|
variances = [0.1, 0.2] |
|
preds = tf.concat( |
|
[bbox_regressions, |
|
landm_regressions, |
|
tf.ones_like(classifications[:, 0][..., tf.newaxis]), |
|
classifications[:, 1][..., tf.newaxis]], 1) |
|
priors = prior_box_tf(image_sizes, min_sizes, steps, False) |
|
decode_preds = decode_tf(preds, priors, variances) |
|
|
|
selected_indices = tf.image.non_max_suppression( |
|
boxes=decode_preds[:, :4], |
|
scores=decode_preds[:, -1], |
|
max_output_size=tf.shape(decode_preds)[0], |
|
iou_threshold=iou_th, |
|
score_threshold=score_th) |
|
|
|
out = tf.gather(decode_preds, selected_indices) |
|
|
|
return out |
|
|
|
|