|
import os |
|
|
|
import cv2 |
|
import gradio |
|
import numpy as np |
|
from huggingface_hub import Repository |
|
from scipy.ndimage import gaussian_filter |
|
from tensorflow.keras.models import load_model |
|
from tensorflow_addons.layers import InstanceNormalization |
|
|
|
from networks.layers import AdaIN, AdaptiveAttention |
|
from options.swap_options import SwapOptions |
|
from utils.utils import (estimate_norm, get_lm, inverse_estimate_norm, |
|
norm_crop, transform_landmark_points) |
|
|
|
|
|
|
|
|
|
opt = SwapOptions().parse() |
|
|
|
retina_repo = Repository(local_dir="retina_model", clone_from="felixrosberg/RetinaFace") |
|
|
|
from retina_model import * |
|
|
|
RetinaFace = load_model("retina_model/RetinaFace-Res50.h5" |
|
|
|
|
|
|
|
|
|
|
|
) |
|
|
|
arc_repo = Repository(local_dir="arcface_model", clone_from="felixrosberg/ArcFace") |
|
ArcFace = load_model("arcface_model/ArcFace-Res50.h5") |
|
ArcFaceE = load_model("arcface_model/ArcFacePerceptual-Res50.h5") |
|
|
|
g_repo = Repository(local_dir="g_model_c_hq", clone_from="felixrosberg/FaceDancer") |
|
G = load_model("g_model_c_hq/FaceDancer_config_c_HQ.h5", custom_objects={"AdaIN": AdaIN, |
|
"AdaptiveAttention": AdaptiveAttention, |
|
"InstanceNormalization": InstanceNormalization}) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
blend_mask_base = np.zeros(shape=(256, 256, 1)) |
|
blend_mask_base[80:244, 32:224] = 1 |
|
blend_mask_base = gaussian_filter(blend_mask_base, sigma=7) |
|
|
|
|
|
def run_inference(target, source, slider, adv_slider, settings): |
|
try: |
|
source = np.array(source) |
|
target = np.array(target) |
|
|
|
|
|
if "anonymize" not in settings: |
|
source_a = RetinaFace(np.expand_dims(source, axis=0)).numpy()[0] |
|
source_h, source_w, _ = source.shape |
|
source_lm = get_lm(source_a, source_w, source_h) |
|
source_aligned = norm_crop(source, source_lm, image_size=256) |
|
source_z = ArcFace.predict(np.expand_dims(tf.image.resize(source_aligned, [112, 112]) / 255.0, axis=0)) |
|
else: |
|
source_z = None |
|
|
|
|
|
im = target |
|
im_h, im_w, _ = im.shape |
|
im_shape = (im_w, im_h) |
|
|
|
detection_scale = im_w // 640 if im_w > 640 else 1 |
|
|
|
faces = RetinaFace(np.expand_dims(cv2.resize(im, |
|
(im_w // detection_scale, |
|
im_h // detection_scale)), axis=0)).numpy() |
|
|
|
total_img = im / 255.0 |
|
for annotation in faces: |
|
lm_align = np.array([[annotation[4] * im_w, annotation[5] * im_h], |
|
[annotation[6] * im_w, annotation[7] * im_h], |
|
[annotation[8] * im_w, annotation[9] * im_h], |
|
[annotation[10] * im_w, annotation[11] * im_h], |
|
[annotation[12] * im_w, annotation[13] * im_h]], |
|
dtype=np.float32) |
|
|
|
|
|
M, pose_index = estimate_norm(lm_align, 256, "arcface", shrink_factor=1.0) |
|
im_aligned = (cv2.warpAffine(im, M, (256, 256), borderValue=0.0) - 127.5) / 127.5 |
|
|
|
if "adversarial defense" in settings: |
|
eps = adv_slider / 200 |
|
X = tf.convert_to_tensor(np.expand_dims(im_aligned, axis=0)) |
|
with tf.GradientTape() as tape: |
|
tape.watch(X) |
|
|
|
X_z = ArcFaceE(tf.image.resize(X * 0.5 + 0.5, [112, 112])) |
|
output = R([X, X_z]) |
|
|
|
loss = tf.reduce_mean(tf.abs(0 - output)) |
|
|
|
gradient = tf.sign(tape.gradient(loss, X)) |
|
|
|
adv_x = X + eps * gradient |
|
im_aligned = tf.clip_by_value(adv_x, -1, 1)[0] |
|
|
|
if "anonymize" in settings and "reconstruction attack" not in settings: |
|
"""source_z = ArcFace.predict(np.expand_dims(tf.image.resize(im_aligned, [112, 112]) / 255.0, axis=0)) |
|
anon_ratio = int(512 * (slider / 100)) |
|
anon_vector = np.ones(shape=(1, 512)) |
|
anon_vector[:, :anon_ratio] = -1 |
|
np.random.shuffle(anon_vector) |
|
source_z *= anon_vector""" |
|
|
|
slider_weight = slider / 100 |
|
|
|
target_z = ArcFace.predict(np.expand_dims(tf.image.resize(im_aligned, [112, 112]) * 0.5 + 0.5, axis=0)) |
|
|
|
|
|
source_z = slider_weight * source_z + (1 - slider_weight) * target_z |
|
|
|
if "reconstruction attack" in settings: |
|
source_z = ArcFaceE.predict(np.expand_dims(tf.image.resize(im_aligned, [112, 112]) * 0.5 + 0.5, axis=0)) |
|
|
|
|
|
if "reconstruction attack" not in settings: |
|
changed_face_cage = G.predict([np.expand_dims(im_aligned, axis=0), |
|
source_z]) |
|
changed_face = changed_face_cage[0] * 0.5 + 0.5 |
|
|
|
|
|
transformed_lmk = transform_landmark_points(M, lm_align) |
|
|
|
|
|
iM, _ = inverse_estimate_norm(lm_align, transformed_lmk, 256, "arcface", shrink_factor=1.0) |
|
iim_aligned = cv2.warpAffine(changed_face, iM, im_shape, borderValue=0.0) |
|
|
|
|
|
blend_mask = cv2.warpAffine(blend_mask_base, iM, im_shape, borderValue=0.0) |
|
blend_mask = np.expand_dims(blend_mask, axis=-1) |
|
total_img = (iim_aligned * blend_mask + total_img * (1 - blend_mask)) |
|
else: |
|
changed_face_cage = R.predict([np.expand_dims(im_aligned, axis=0), |
|
source_z]) |
|
changed_face = changed_face_cage[0] * 0.5 + 0.5 |
|
|
|
|
|
transformed_lmk = transform_landmark_points(M, lm_align) |
|
|
|
|
|
iM, _ = inverse_estimate_norm(lm_align, transformed_lmk, 256, "arcface", shrink_factor=1.0) |
|
iim_aligned = cv2.warpAffine(changed_face, iM, im_shape, borderValue=0.0) |
|
|
|
|
|
blend_mask = cv2.warpAffine(blend_mask_base, iM, im_shape, borderValue=0.0) |
|
blend_mask = np.expand_dims(blend_mask, axis=-1) |
|
total_img = (iim_aligned * blend_mask + total_img * (1 - blend_mask)) |
|
|
|
if "compare" in settings: |
|
total_img = np.concatenate((im / 255.0, total_img), axis=1) |
|
|
|
total_img = np.clip(total_img, 0, 1) |
|
total_img *= 255.0 |
|
total_img = total_img.astype('uint8') |
|
|
|
return total_img |
|
except Exception as e: |
|
print(e) |
|
return None |
|
|
|
|
|
description = "Performs subject agnostic identity transfer from a source face to all target faces. \n\n" \ |
|
"Implementation and demo of FaceDancer, accepted to WACV 2023. \n\n" \ |
|
"Pre-print: https://arxiv.org/abs/2210.10473 \n\n" \ |
|
"Code: https://github.com/felixrosberg/FaceDancer \n\n" \ |
|
"\n\n" \ |
|
"Options:\n\n" \ |
|
"-Compare returns the target image concatenated with the results.\n\n" \ |
|
"-Anonymize will ignore the source image and perform an identity permutation of target faces.\n\n" \ |
|
"-Reconstruction attack will attempt to invert the face swap or the anonymization.\n\n" \ |
|
"-Adversarial defense will add a permutation noise that disrupts the reconstruction attack.\n\n" \ |
|
"NOTE: There is no guarantees with the anonymization process currently.\n\n" \ |
|
"NOTE: source image with too high resolution may not work properly!" |
|
examples = [["assets/rick.jpg", "assets/musk.jpg", 100, 10, ["compare"]], |
|
["assets/musk.jpg", "assets/musk.jpg", 100, 10, ["anonymize"]]] |
|
article = """ |
|
Demo is based of recent research from my Ph.D work. Results expects to be published in the coming months. |
|
""" |
|
|
|
iface = gradio.Interface(run_inference, |
|
[gradio.inputs.Image(shape=None, label='Target'), |
|
gradio.inputs.Image(shape=None, label='Source'), |
|
gradio.inputs.Slider(0, 100, default=100, label="Anonymization ratio (%)"), |
|
gradio.inputs.Slider(0, 100, default=100, label="Adversarial defense ratio (%)"), |
|
gradio.inputs.CheckboxGroup(["compare", |
|
"anonymize", |
|
"reconstruction attack", |
|
"adversarial defense"], |
|
label='Options')], |
|
gradio.outputs.Image(), |
|
title="Face Swap", |
|
description=description, |
|
examples=examples, |
|
article=article, |
|
layout="vertical") |
|
iface.launch() |
|
|