poultainc / app.py
pyresearch's picture
Update app.py
bec6129
raw
history blame
1.98 kB
import streamlit as st
from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel
from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc
from clarifai_grpc.grpc.api.status import status_code_pb2
# Function to make API call and get text completion
def get_text_completion(raw_text):
PAT = '9b209aadda08410caf0b6d815b57e080'
USER_ID = 'openai'
APP_ID = 'chat-completion'
MODEL_ID = 'GPT-4'
MODEL_VERSION_ID = '5d7a50b44aec4a01a9c492c5a5fcf387'
channel = ClarifaiChannel.get_grpc_channel()
stub = service_pb2_grpc.V2Stub(channel)
metadata = (('authorization', 'Key ' + PAT),)
userDataObject = resources_pb2.UserAppIDSet(user_id=USER_ID, app_id=APP_ID)
post_model_outputs_response = stub.PostModelOutputs(
service_pb2.PostModelOutputsRequest(
user_app_id=userDataObject,
model_id=MODEL_ID,
version_id=MODEL_VERSION_ID,
inputs=[
resources_pb2.Input(
data=resources_pb2.Data(
text=resources_pb2.Text(
raw=raw_text
)
)
)
]
),
metadata=metadata
)
if post_model_outputs_response.status.code != status_code_pb2.SUCCESS:
raise Exception(f"Post model outputs failed, status: {post_model_outputs_response.status.description}")
output = post_model_outputs_response.outputs[0]
return output.data.text.raw
# Streamlit app
def main():
st.title("Text Completion App")
# Get user input
raw_text = st.text_area("Enter text:", "i need to know about narcotics pemishment")
# Perform text completion when button is clicked
if st.button("Complete Text"):
completion_result = get_text_completion(raw_text)
st.success("Completion:\n{}".format(completion_result))
if __name__ == "__main__":
main()