poornesh110's picture
Update app.py
01f9eef
raw
history blame contribute delete
No virus
13.1 kB
#!/usr/bin/env python
# coding: utf-8
# # Importing the Required Libraries.
from IPython import get_ipython
import keras
import os
os.environ['SM_FRAMEWORK'] = 'tf.keras'
import segmentation_models as sm
import glob
import matplotlib.pyplot as plt
from scipy import ndimage
from scipy.ndimage import label, generate_binary_structure
import radiomics
import cv2
import SimpleITK as sitk
import six
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import pickle
from sklearn.model_selection import train_test_split
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import mutual_info_classif
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import RFE
from sklearn.metrics import roc_auc_score
from sklearn.feature_selection import SelectFromModel
from sklearn.linear_model import Lasso, LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.svm import LinearSVC
from sklearn.datasets import load_iris
from sklearn.feature_selection import SelectFromModel
from sklearn.feature_selection import mutual_info_classif as MIC
from sklearn.feature_selection import mutual_info_classif, mutual_info_regression
from sklearn.feature_selection import SelectKBest, SelectPercentile
from sklearn.feature_selection import SequentialFeatureSelector
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.metrics import f1_score
from sklearn.model_selection import cross_validate
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import Perceptron
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import GridSearchCV
import gradio as gr
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
# # Defining the path to Model and Images
# In[2]:
IMAGE_SIZE = (256,256,3)
path_base_model = './/models//'
# # Loading the models
# In[4]:
BACKBONE = 'efficientnetb0'
model1 = sm.Unet(BACKBONE, input_shape = (IMAGE_SIZE[0],IMAGE_SIZE[1],IMAGE_SIZE[2]),classes=1, activation='sigmoid',encoder_weights='imagenet')
model2 = sm.Unet(BACKBONE, input_shape = (IMAGE_SIZE[0],IMAGE_SIZE[1],IMAGE_SIZE[2]),classes=1, activation='sigmoid',encoder_weights='imagenet')
model3 = sm.Unet(BACKBONE, input_shape = (IMAGE_SIZE[0],IMAGE_SIZE[1],IMAGE_SIZE[2]),classes=1, activation='sigmoid',encoder_weights='imagenet')
BACKBONE = 'efficientnetb7'
model4 = sm.Unet(BACKBONE, input_shape = (IMAGE_SIZE[0],IMAGE_SIZE[1],IMAGE_SIZE[2]),classes=1, activation='sigmoid',encoder_weights='imagenet')
model5 = sm.Unet(BACKBONE, input_shape = (IMAGE_SIZE[0],IMAGE_SIZE[1],IMAGE_SIZE[2]),classes=1, activation='sigmoid',encoder_weights='imagenet')
preprocess_input = sm.get_preprocessing(BACKBONE)
model1.load_weights(path_base_model + 'model1.hdf5')
model2.load_weights(path_base_model + 'model2.hdf5')
model3.load_weights(path_base_model + 'model3.hdf5')
model4.load_weights(path_base_model + 'model4.hdf5')
model5.load_weights(path_base_model + 'model5.hdf5')
# # Defining Required Functions
# In[5]:
def preprocessing_HE(img_):
hist, bins = np.histogram(img_.flatten(), 256,[0,256])
cdf = hist.cumsum()
cdf_m = np.ma.masked_equal(cdf,0)
cdf_m = (cdf_m - cdf_m.min())*255/(cdf_m.max()-cdf_m.min())
cdf = np.ma.filled(cdf_m,0).astype('uint8')
img_2 = cdf[img_]
return img_2
def get_binary_mask (mask_, th_ = 0.5):
mask_[mask_>th_] = 1
mask_[mask_<=th_] = 0
return mask_
def ensemble_results (mask1_, mask2_, mask3_, mask4_, mask5_):
mask1_ = get_binary_mask (mask1_)
mask2_ = get_binary_mask (mask2_)
mask3_ = get_binary_mask (mask3_)
mask4_ = get_binary_mask (mask4_)
mask5_ = get_binary_mask (mask5_)
ensemble_mask = mask1_ + mask2_ + mask3_ + mask4_ + mask5_
ensemble_mask[ensemble_mask<=2.0] = 0
ensemble_mask[ensemble_mask> 2.0] = 1
return ensemble_mask
def postprocessing_HoleFilling (mask_):
ensemble_mask_post_temp = ndimage.binary_fill_holes(mask_).astype(int)
return ensemble_mask_post_temp
def get_maximum_index (labeled_array):
ind_nums = []
for i in range (len(np.unique(labeled_array)) - 1):
ind_nums.append ([0, i+1])
for i in range (1, len(np.unique(labeled_array))):
ind_nums[i-1][0] = len(np.where (labeled_array == np.unique(labeled_array)[i])[0])
ind_nums = sorted(ind_nums)
return ind_nums[len(ind_nums)-1][1], ind_nums[len(ind_nums)-2][1]
def postprocessing_EliminatingIsolation (ensemble_mask_post_temp):
labeled_array, num_features = label(ensemble_mask_post_temp)
ind_max1, ind_max2 = get_maximum_index (labeled_array)
ensemble_mask_post_temp2 = np.zeros (ensemble_mask_post_temp.shape)
ensemble_mask_post_temp2[labeled_array == ind_max1] = 1
ensemble_mask_post_temp2[labeled_array == ind_max2] = 1
return ensemble_mask_post_temp2.astype(int)
def get_prediction(model_, img_org_):
img_org_resize = cv2.resize(img_org_,(IMAGE_SIZE[0],IMAGE_SIZE[1]),cv2.INTER_AREA)
img_org_resize_HE = preprocessing_HE (img_org_resize)
img_ready = preprocess_input (img_org_resize_HE)
img_ready = np.expand_dims(img_ready, axis=0)
pr_mask = model_.predict(img_ready)
pr_mask = np.squeeze(pr_mask)
pr_mask = np.expand_dims(pr_mask, axis=-1)
return pr_mask[:,:,0]
# ## Create and intantiate Feature Extractor and enable the required features
# In[9]:
extractor = radiomics.featureextractor.RadiomicsFeatureExtractor(force2D=True)
extractor.enableImageTypeByName('Original') # extract features from the original image
extractor.enableFeatureClassByName('firstorder') # extract first-order features
extractor.enableFeatureClassByName('glcm') # extract GLCM features
extractor.enableFeatureClassByName('gldm') # extract GLDM features
extractor.enableFeatureClassByName('glszm') # extract GLSZM features
extractor.enableFeatureClassByName('ngtdm') # extract NGTDM features
features_name = ['diagnostics_Versions_PyRadiomics',
'diagnostics_Versions_Numpy',
'diagnostics_Versions_SimpleITK',
'diagnostics_Versions_PyWavelet',
'diagnostics_Versions_Python',
'diagnostics_Configuration_Settings',
'diagnostics_Configuration_EnabledImageTypes',
'diagnostics_Image-original_Hash',
'diagnostics_Image-original_Dimensionality',
'diagnostics_Image-original_Spacing',
'diagnostics_Image-original_Size',
'diagnostics_Image-original_Mean',
'diagnostics_Image-original_Minimum',
'diagnostics_Image-original_Maximum',
'diagnostics_Mask-original_Hash',
'diagnostics_Mask-original_Spacing',
'diagnostics_Mask-original_Size',
'diagnostics_Mask-original_BoundingBox',
'diagnostics_Mask-original_VoxelNum',
'diagnostics_Mask-original_VolumeNum',
'diagnostics_Mask-original_CenterOfMassIndex',
'diagnostics_Mask-original_CenterOfMass',
'original_firstorder_10Percentile',
'original_firstorder_90Percentile',
'original_firstorder_Energy',
'original_firstorder_Entropy',
'original_firstorder_InterquartileRange',
'original_firstorder_Kurtosis',
'original_firstorder_Maximum',
'original_firstorder_MeanAbsoluteDeviation',
'original_firstorder_Mean',
'original_firstorder_Median',
'original_firstorder_Minimum',
'original_firstorder_Range',
'original_firstorder_RobustMeanAbsoluteDeviation',
'original_firstorder_RootMeanSquared',
'original_firstorder_Skewness',
'original_firstorder_TotalEnergy',
'original_firstorder_Uniformity',
'original_firstorder_Variance',
'original_glcm_Autocorrelation',
'original_glcm_ClusterProminence',
'original_glcm_ClusterShade',
'original_glcm_ClusterTendency',
'original_glcm_Contrast',
'original_glcm_Correlation',
'original_glcm_DifferenceAverage',
'original_glcm_DifferenceEntropy',
'original_glcm_DifferenceVariance',
'original_glcm_Id',
'original_glcm_Idm',
'original_glcm_Idmn',
'original_glcm_Idn',
'original_glcm_Imc1',
'original_glcm_Imc2',
'original_glcm_InverseVariance',
'original_glcm_JointAverage',
'original_glcm_JointEnergy',
'original_glcm_JointEntropy',
'original_glcm_MCC',
'original_glcm_MaximumProbability',
'original_glcm_SumAverage',
'original_glcm_SumEntropy',
'original_glcm_SumSquares',
'original_gldm_DependenceEntropy',
'original_gldm_DependenceNonUniformity',
'original_gldm_DependenceNonUniformityNormalized',
'original_gldm_DependenceVariance',
'original_gldm_GrayLevelNonUniformity',
'original_gldm_GrayLevelVariance',
'original_gldm_HighGrayLevelEmphasis',
'original_gldm_LargeDependenceEmphasis',
'original_gldm_LargeDependenceHighGrayLevelEmphasis',
'original_gldm_LargeDependenceLowGrayLevelEmphasis',
'original_gldm_LowGrayLevelEmphasis',
'original_gldm_SmallDependenceEmphasis',
'original_gldm_SmallDependenceHighGrayLevelEmphasis',
'original_gldm_SmallDependenceLowGrayLevelEmphasis',
'original_glrlm_GrayLevelNonUniformity',
'original_glrlm_GrayLevelNonUniformityNormalized',
'original_glrlm_GrayLevelVariance',
'original_glrlm_HighGrayLevelRunEmphasis',
'original_glrlm_LongRunEmphasis',
'original_glrlm_LongRunHighGrayLevelEmphasis',
'original_glrlm_LongRunLowGrayLevelEmphasis',
'original_glrlm_LowGrayLevelRunEmphasis',
'original_glrlm_RunEntropy',
'original_glrlm_RunLengthNonUniformity',
'original_glrlm_RunLengthNonUniformityNormalized',
'original_glrlm_RunPercentage',
'original_glrlm_RunVariance',
'original_glrlm_ShortRunEmphasis',
'original_glrlm_ShortRunHighGrayLevelEmphasis',
'original_glrlm_ShortRunLowGrayLevelEmphasis',
'original_glszm_GrayLevelNonUniformity',
'original_glszm_GrayLevelNonUniformityNormalized',
'original_glszm_GrayLevelVariance',
'original_glszm_HighGrayLevelZoneEmphasis',
'original_glszm_LargeAreaEmphasis',
'original_glszm_LargeAreaHighGrayLevelEmphasis',
'original_glszm_LargeAreaLowGrayLevelEmphasis',
'original_glszm_LowGrayLevelZoneEmphasis',
'original_glszm_SizeZoneNonUniformity',
'original_glszm_SizeZoneNonUniformityNormalized',
'original_glszm_SmallAreaEmphasis',
'original_glszm_SmallAreaHighGrayLevelEmphasis',
'original_glszm_SmallAreaLowGrayLevelEmphasis',
'original_glszm_ZoneEntropy',
'original_glszm_ZonePercentage',
'original_glszm_ZoneVariance',
'original_ngtdm_Busyness',
'original_ngtdm_Coarseness',
'original_ngtdm_Complexity',
'original_ngtdm_Contrast',
'original_ngtdm_Strength']
# In[12]:
df = pd.read_csv('final_dataset1.csv')
df.shape
# In[13]:
X_train, X_test, y_train, y_test = train_test_split(
df.drop(labels=['Label'], axis=1),
df['Label'],
test_size=0.2,
random_state=23)
final_model = pickle.load(open('best_model', 'rb'))
# In[42]:
def pneumonia(image):
img_ = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
resized_img = cv2.resize(img_,(256,256))
original_image = 'original.jpeg'
cv2.imwrite(original_image,resized_img)
img = cv2.imread(original_image)
pr_mask1 = get_prediction (model1, img);
pr_mask2 = get_prediction (model2, img);
pr_mask3 = get_prediction (model3, img);
pr_mask4 = get_prediction (model4, img);
pr_mask5 = get_prediction (model5, img);
ensemble_mask = ensemble_results (pr_mask1, pr_mask2, pr_mask3, pr_mask4, pr_mask5)
ensemble_mask_post_HF = postprocessing_HoleFilling (ensemble_mask)
ensemble_mask_post_HF_EI = postprocessing_EliminatingIsolation (ensemble_mask_post_HF)
mask = 'mask.jpeg'
cv2.imwrite(mask,ensemble_mask_post_HF_EI*255)
features = {}
df = pd.DataFrame(columns=features_name)
image_ = sitk.ReadImage(original_image, sitk.sitkInt8)
mask = sitk.ReadImage(mask, sitk.sitkInt8)
features = extractor.execute(image_, mask)
data = []
values = []
for key in features:
values.append(features[key])
data.extend([values])
df.loc[0] = data[0]
cols = df.columns[22:]
# Create new dataframe with selected columns
DataFrame = df[cols]
# Selected 55 best features using Correlation based feature selection
selector = SelectKBest(score_func=mutual_info_classif, k=65) # choose the number of features you want to keep
CFS = selector.fit_transform(X_train, y_train) # features are selected
colu = list(X_test.columns[selector.get_support()]) #generating name of columns consisting that feature
Selected_DF = DataFrame[colu]
final_model = pickle.load(open('best_model', 'rb'))
prediction = final_model.predict(Selected_DF)
if prediction == 0: # Determine the predicted class
Label = "Normal"
elif prediction == 1:
Label = "Pneumonia"
return Label
# In[43]:
iface =gr.Interface(fn = pneumonia,
inputs = "image",
outputs = [gr.outputs.Textbox(label="Prediction")],
title = "Pnuemonia Detection from Chest X ray images",
description = "Upload a Chest X ray image")
iface.launch()