ethio_hydro / temperature_functions.py
poooja2012's picture
data folder
00ac9b2
raw
history blame
10.9 kB
#standard imports
import pandas as pd
import numpy as np
import streamlit as st
import os
import glob
#imports for finding the nearest lat long using haversine distance
from math import radians, cos, sin, asin, sqrt
import math
#visualization libraries to visualize different plots
import plotly.express as px
import plotly.graph_objects as go
import altair as alt
#for Logo plotting
from PIL import Image
#for Folium Map Creation
from typing import Dict, List, Optional
import folium
from streamlit_folium import st_folium
from branca.element import Figure
from precipitation_function import lat_long_type
#disabling warnings
import warnings
warnings.filterwarnings("ignore")
#For parallel processing
from pandarallel import pandarallel
pandarallel.initialize(progress_bar=True)
fig = Figure(width = 550,height = 350)
#function for calculating annual average
@st.cache
def annual_avg(df,year_lst):
annual_avg_df_lst = list()
for i in year_lst:
d = df.get_group((i))
d['Annual avg'] = (d['daily_avg'].sum())/len(d)
annual_avg_df_lst.append(d)
return annual_avg_df_lst
#function for splitting the date column values into year, month and day
def df_date_split(df,lat_long_list):
df_date_list = list()
for i in lat_long_list:
grouped_df = df.get_group(i)
grouped_df[['Year','Month','Day']] = grouped_df['date'].str.split('-',expand = True)
df_date_list.append(grouped_df)
date_split_df = pd.concat(df_date_list)
return date_split_df
@st.cache
#function for creating 2 separate columns one for country code with 'et' values and 2nd with lat long concated values
def lat_long_process(df):
df['lat_long'] = df.loc[:,'lat'].astype(str)+','+df.loc[:,'long'].astype(str)
df.drop_duplicates(inplace = True)
return df
@st.cache
#Creating a separate dataframe for lat long values and returning a list of lat_long values
def lat_long_list_creation(df):
lat_long_df = df[['lat','long']]
lat_long_df['lat_long'] = lat_long_df.loc[:,'lat'].astype(str)+','+lat_long_df.loc[:,'long'].astype(str)
lat_long_df.drop_duplicates(inplace=True)
lat_long_list = lat_long_df['lat_long']
return lat_long_list
#function for grouping the data on lat long and returning only the et lat long
def group_df(df,lat_long_lst):
in_names = df.groupby(df['lat_long'])
temperaturedf_new = list()
for i in lat_long_lst:
df1 = in_names.get_group(i)
temperaturedf_new.append(df1)
result = pd.concat(temperaturedf_new)
return result
#function for calculating daily average
def daily_avg(x,y):
return (x+y)/2
@st.cache
#creating avg dataframe
def annual_avg_plot(annual_avg_df,lat_long_option,lat_long_list):
annual_avg_df = annual_avg_df.groupby('lat_long')
annual_avg_df = df_date_split(annual_avg_df,lat_long_list)
annual_avg_df = annual_avg_df.groupby('lat_long')
annual_avg_df = annual_avg_df.get_group(lat_long_option)
#returns the list of unique year values
year_lst = annual_avg_df['Year'].unique()
annual_avg_dataframe = annual_avg_df.groupby('Year')
annual_avg_result = annual_avg(annual_avg_dataframe,year_lst)
annual_average = pd.concat(annual_avg_result,axis = 0)
return annual_average
#creating average temp plotly chart
def avg_temp_plot(annual_temp,lat_long_val):
#CODE FOR PLOTTING ANNUAL AVERAGE TEMPERATURE
fig_avg = px.line(annual_temp, x= 'Year',y='Annual avg')
fig_avg.update_layout(
yaxis = dict(tickfont = dict(size=15)),
xaxis = dict(tickfont = dict(size=15)),
plot_bgcolor = 'rgba(0,0,0,0)')
fig_avg.update_traces(line_color ='dimgray')
fig_avg.update_xaxes(gridcolor='whitesmoke')
fig_avg.update_yaxes(gridcolor = 'whitesmoke')
fig_avg.update_yaxes(title = 'Annual Average Temperature (C)')
# fig_avg.update_layout(title = "Annual Average Temperature: "+str(lat_long_val))
return fig_avg
@st.cache
def annual_min_plot(Annual_temp_min,option_annual_min_temp,lat_long_list):
Annual_temp_min = Annual_temp_min.groupby('lat_long')
Annual_temp_min = df_date_split(Annual_temp_min,lat_long_list)
Annual_temp_min = Annual_temp_min.groupby(['lat_long','Year'])[['tmin']].min()
Annual_temp_min.rename(columns = {'tmin':'Yearly_minimum_temp'},inplace = True)
Annual_temp_min.reset_index(inplace = True)
Annual_temp_min = Annual_temp_min.groupby('lat_long')
df2 = Annual_temp_min.get_group(option_annual_min_temp)
return df2
@st.cache
def annual_max_plot(Annual_temp,option_annual_temp,lat_long_list):
Annual_temp = Annual_temp.groupby('lat_long')
Annual_temp = df_date_split(Annual_temp,lat_long_list)
Annual_temp = Annual_temp.groupby(['lat_long','Year'])[['tmax']].max()
Annual_temp.rename(columns = {'tmax':'Yearly_maximum_temp'},inplace = True)
Annual_temp.reset_index(inplace = True)
Annual_temp = Annual_temp.groupby('lat_long')
df1 = Annual_temp.get_group(option_annual_temp)
return df1
@st.cache
def daily_avg_calc(result,option,start,end):
grouped_temperature_df = result.groupby('lat_long')
data_frame = grouped_temperature_df.get_group(option)
data_frame.set_index('date',inplace = True)
data_frame_start_end = data_frame.loc[str(start):str(end)]
data_frame_start_end = data_frame_start_end.reset_index()
return data_frame_start_end
def daily_avg_plot(data_frame_start_end,lat_long_val):
#Plotting the line chart of the daily average
fig = px.line(data_frame_start_end, x = 'date',y='daily_avg',title = 'Daily Average Temperature')
fig.update_traces(line_color = 'blue')
fig.update_xaxes(title_text = 'Year',gridcolor = 'whitesmoke')
fig.update_yaxes(ticklabelposition="inside top", title= 'Daily Average Temperature (C)',gridcolor = 'whitesmoke')
fig.update_layout(margin = dict(l=25,r=25,t=25,b=25))
fig.update_layout(plot_bgcolor = 'rgba(0,0,0,0)')
# fig.update_layout(title = "Daily Average Temperature: "+str(lat_long_val))
return fig
@st.cache
def monthly_mean_calc(temperature_monthly_df,lat_long_list):
#monthly mean calculation
temperature_monthly_df = temperature_monthly_df.groupby('lat_long')
date_split_df = df_date_split(temperature_monthly_df,lat_long_list)
monthly_avg_temp = date_split_df.groupby(['lat_long','Year','Month'])[['daily_avg']].mean()
monthly_avg_temp.rename(columns = {'daily_avg':'Monthly mean temperature'},inplace = True)
return monthly_avg_temp
@st.cache(ttl=24*60*60)
def selecting_mean(monthly_avg_temp,option_mean,start_year,end_year):
monthly_avg_temp = monthly_avg_temp.reset_index().set_index('Year').groupby('lat_long')
grouped_monthly_mean = monthly_avg_temp.get_group(option_mean)
df = grouped_monthly_mean.loc[start_year:end_year]
df = df.reset_index()
return df
def plot_mean_data(df,lat_long_val):
title_text = "Monthly Mean Temperature: "+str(lat_long_val)
highlight = alt.selection(
type='single', on='mouseover', fields=['Year'], nearest=True)
base = alt.Chart(df,title = title_text).encode(
x = alt.X('Month:Q',scale = alt.Scale(domain=[1,12]),axis=alt.Axis(tickMinStep=1)),
y = alt.Y('Monthly mean temperature:Q',scale = alt.Scale(domain =[int(df['Monthly mean temperature'].min()),int(df['Monthly mean temperature'].max())])),
color = alt.Color('Year:O',scale = alt.Scale(scheme = 'magma'))
)
points = base.mark_circle().encode(
opacity=alt.value(0),
tooltip=[
alt.Tooltip('Year:O', title='Year'),
alt.Tooltip('Month:Q', title='Month'),
alt.Tooltip('Monthly mean temperature:Q', title='Mean temp')
]).add_selection(highlight)
lines = base.mark_line().encode(
size=alt.condition(~highlight, alt.value(1), alt.value(3)))
mean_chart = (points + lines).properties(width=1000, height=450).interactive()
return mean_chart
def max_temp_plot(df_max,lat_long_val):
fig_max = px.line(df_max,x = 'Year',y='Yearly_maximum_temp')
fig_max.update_traces(line_color = 'maroon')
fig_max.update_layout(
yaxis = dict(tickfont = dict(size=15)),
xaxis = dict(tickfont = dict(size=15)),
plot_bgcolor = 'rgba(0,0,0,0)')
fig_max.update_xaxes(gridcolor='whitesmoke')
fig_max.update_yaxes(gridcolor = 'whitesmoke')
fig_max.update_yaxes(title = "Annual Maximum Temperature (C)")
# fig_max.update_layout(title = "Yearly Maximum Temperature: "+str(lat_long_val))
return fig_max
def min_temp_plot(df_min,lat_long_val):
fig_min = px.line(df_min, x= 'Year',y = 'Yearly_minimum_temp')
fig_min.update_traces(line_color ='blue')
fig_min.update_layout(
yaxis = dict(tickfont = dict(size=15)),
xaxis = dict(tickfont = dict(size=15)),
plot_bgcolor = 'rgba(0,0,0,0)')
fig_min.update_xaxes(gridcolor='whitesmoke')
fig_min.update_yaxes(gridcolor = 'whitesmoke')
fig_min.update_yaxes(title = "Annual Minimum Temperature (C)")
# fig_min.update_layout(title = "Yearly Minimum Temperature: "+str(lat_long_val))
return fig_min
#code for downloading Data as a CSV File
@st.cache
def convert_df(df):
return df.to_csv().encode('utf-8')
# a = st.sidebar.empty()
#result dataframe contains the daily average value as well.
#Function for creating folium map and returning the latitude and Longitude of the clicked location
def map_creation(lat,long,clicked_lat,clicked_long):
with st.sidebar:
m = folium.Map(location = [9.14,40],zoom_start =7)
fig.add_child(m)
tile = folium.TileLayer(
tiles = 'https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{z}/{y}/{x}',
attr = 'Esri',
name = 'Esri Satellite',
overlay = False,
control = True).add_to(m)
folium.TileLayer('Stamen Terrain').add_to(m)
folium.TileLayer('Stamen Water Color').add_to(m)
folium.LayerControl().add_to(m)
if (clicked_lat == 0) and (clicked_long == 0):
folium.Marker([lat,long]).add_to(m)
else:
folium.Marker([lat,long]).add_to(m)
folium.Marker([clicked_lat,clicked_long]).add_to(m)
st_data = st_folium(m,key = 'map_fig_1')
return st_data
#df is the initial df that contains only et data
def search_func(latitude,longitude,lt_lng_lst,df):
df['lat_radian'],df['long_radian'] = np.radians(df['lat']),np.radians(df['long'])
df['dLON'] = df['long_radian'] - math.radians(longitude)
df['dLAT'] = df['lat_radian'] - math.radians(latitude)
df['distance'] = 6371 * 2 * np.arcsin(np.sqrt(np.sin(df['dLAT']/2)**2 + math.cos(math.radians(longitude)) * np.cos(df['lat_radian']) * np.sin(df['dLON']/2)**2))
a = df['distance'].idxmin()
nearest_neighbor = df._get_value(a,'lat_long')
nearest_neighbor = lat_long_type(nearest_neighbor)
# st.write("**Nearest Latitude and Longitude is :**",nearest_neighbor)
return nearest_neighbor