pomercier commited on
Commit
d1e4ac8
1 Parent(s): f37b361

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +142 -11
app.py CHANGED
@@ -1,15 +1,146 @@
1
- import os
2
  import gradio as gr
 
 
3
 
4
- API_KEY=os.environ.get('HUGGING_FACE_HUB_TOKEN', None)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- article = """---
7
- This space was created using [SD Space Creator](https://huggingface.co/spaces/anzorq/sd-space-creator)."""
 
 
8
 
9
- gr.Interface.load(
10
- name="models/pomercier/Francois_Legault",
11
- title="""Francois Legault""",
12
- description="""Demo for <a href="https://huggingface.co/pomercier/Francois_Legault">Francois Legault</a> Stable Diffusion model.""",
13
- article=article,
14
- api_key=API_KEY,
15
- ).queue(concurrency_count=20).launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler
2
  import gradio as gr
3
+ import torch
4
+ from PIL import Image
5
 
6
+ model_id = 'pomercier/Francois_Legault'
7
+ prefix = ''
8
+
9
+ scheduler = DPMSolverMultistepScheduler(
10
+ beta_start=0.00085,
11
+ beta_end=0.012,
12
+ beta_schedule="scaled_linear",
13
+ num_train_timesteps=1000,
14
+ trained_betas=None,
15
+ predict_epsilon=True,
16
+ thresholding=True,
17
+ algorithm_type="dpmsolver++",
18
+ solver_type="midpoint",
19
+ lower_order_final=True,
20
+ )
21
 
22
+ pipe = StableDiffusionPipeline.from_pretrained(
23
+ model_id,
24
+ torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
25
+ scheduler=scheduler)
26
 
27
+ pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(
28
+ model_id,
29
+ torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
30
+ scheduler=scheduler)
31
+
32
+ if torch.cuda.is_available():
33
+ pipe = pipe.to("cuda")
34
+ pipe_i2i = pipe_i2i.to("cuda")
35
+
36
+ def error_str(error, title="Error"):
37
+ return f"""#### {title}
38
+ {error}""" if error else ""
39
+
40
+ def inference(prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt="", auto_prefix=True):
41
+
42
+ generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
43
+ prompt = f"{prefix} {prompt}" if auto_prefix else prompt
44
+
45
+ try:
46
+ if img is not None:
47
+ return img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator), None
48
+ else:
49
+ return txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator), None
50
+ except Exception as e:
51
+ return None, error_str(e)
52
+
53
+ def txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator):
54
+
55
+ result = pipe(
56
+ prompt,
57
+ negative_prompt = neg_prompt,
58
+ num_inference_steps = int(steps),
59
+ guidance_scale = guidance,
60
+ width = width,
61
+ height = height,
62
+ generator = generator)
63
+
64
+ return replace_nsfw_images(result)
65
+
66
+ def img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator):
67
+
68
+ ratio = min(height / img.height, width / img.width)
69
+ img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
70
+ result = pipe_i2i(
71
+ prompt,
72
+ negative_prompt = neg_prompt,
73
+ init_image = img,
74
+ num_inference_steps = int(steps),
75
+ strength = strength,
76
+ guidance_scale = guidance,
77
+ width = width,
78
+ height = height,
79
+ generator = generator)
80
+
81
+ return replace_nsfw_images(result)
82
+
83
+ def replace_nsfw_images(results):
84
+
85
+ for i in range(len(results.images)):
86
+ if results.nsfw_content_detected[i]:
87
+ results.images[i] = Image.open("nsfw.png")
88
+ return results.images[0]
89
+
90
+ css = """.main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
91
+ """
92
+ with gr.Blocks(css=css) as demo:
93
+ gr.HTML(
94
+ f"""
95
+ <div class="main-div">
96
+ <div>
97
+ <h1>Francois Legault Stable Diffusion v1.5</h1>
98
+ </div>
99
+ <p>
100
+ To complete
101
+ </p>
102
+ Running on <b>{"GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"}</b>
103
+ </div>
104
+ """
105
+ )
106
+ with gr.Row():
107
+
108
+ with gr.Column(scale=55):
109
+ with gr.Group():
110
+ with gr.Row():
111
+ prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder=f"{prefix} [your prompt]").style(container=False)
112
+ generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
113
+
114
+ image_out = gr.Image(height=512)
115
+ error_output = gr.Markdown()
116
+
117
+ with gr.Column(scale=45):
118
+ with gr.Tab("Options"):
119
+ with gr.Group():
120
+ neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
121
+ auto_prefix = gr.Checkbox(label="Prefix styling tokens automatically ()", value=True)
122
+
123
+ with gr.Row():
124
+ guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
125
+ steps = gr.Slider(label="Steps", value=25, minimum=2, maximum=75, step=1)
126
+
127
+ with gr.Row():
128
+ width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
129
+ height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)
130
+
131
+ seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
132
+
133
+ with gr.Tab("Image to image"):
134
+ with gr.Group():
135
+ image = gr.Image(label="Image", height=256, tool="editor", type="pil")
136
+ strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
137
+
138
+ auto_prefix.change(lambda x: gr.update(placeholder=f"{prefix} [your prompt]" if x else "[Your prompt]"), inputs=auto_prefix, outputs=prompt, queue=False)
139
+
140
+ inputs = [prompt, guidance, steps, width, height, seed, image, strength, neg_prompt, auto_prefix]
141
+ outputs = [image_out, error_output]
142
+ prompt.submit(inference, inputs=inputs, outputs=outputs)
143
+ generate.click(inference, inputs=inputs, outputs=outputs)
144
+
145
+ demo.queue(concurrency_count=1)
146
+ demo.launch()