Spaces:
Running
Running
aliasgerovs
commited on
Merge branch 'main' into demo
Browse files- analysis.py +27 -9
- app.py +11 -0
- isotonic_regression_model.joblib +0 -0
- plagiarism.py +165 -190
- predictors.py +76 -42
- requirements.txt +1 -1
- utils.py +2 -22
analysis.py
CHANGED
@@ -62,7 +62,10 @@ def depth_analysis(input_text):
|
|
62 |
"punctuation_diversity": (-0.21875, 0.53125),
|
63 |
"type_token_ratio": (0.33002482852189063, 1.0894414982357028),
|
64 |
"calculate_perplexity": (-25.110544681549072, 82.4620680809021),
|
65 |
-
"calculate_syntactic_tree_depth": (
|
|
|
|
|
|
|
66 |
"hapax_legomena_ratio": (0.0830971690138207, 1.0302715687215778),
|
67 |
"mtld": (-84.03125000000001, 248.81875000000002),
|
68 |
}
|
@@ -72,14 +75,17 @@ def depth_analysis(input_text):
|
|
72 |
determiner_use = determiners_frequency(input_text, nlp)
|
73 |
punctuation_variety = punctuation_diversity(input_text)
|
74 |
sentence_depth = calculate_syntactic_tree_depth(input_text, nlp)
|
75 |
-
perplexity = calculate_perplexity(
|
|
|
|
|
76 |
lexical_diversity = type_token_ratio(input_text)
|
77 |
unique_words = hapax_legomena_ratio(input_text)
|
78 |
vocabulary_stability = mtld(input_text)
|
79 |
|
80 |
# normalize between 0 and 100
|
81 |
vocabulary_level_norm = normalize(
|
82 |
-
vocabulary_level,
|
|
|
83 |
)
|
84 |
entity_ratio_norm = normalize(entity_ratio, *usual_ranges["entity_density"])
|
85 |
determiner_use_norm = normalize(
|
@@ -91,12 +97,18 @@ def depth_analysis(input_text):
|
|
91 |
lexical_diversity_norm = normalize(
|
92 |
lexical_diversity, *usual_ranges["type_token_ratio"]
|
93 |
)
|
94 |
-
unique_words_norm = normalize(
|
95 |
-
|
|
|
|
|
|
|
|
|
96 |
sentence_depth_norm = normalize(
|
97 |
sentence_depth, *usual_ranges["calculate_syntactic_tree_depth"]
|
98 |
)
|
99 |
-
perplexity_norm = normalize(
|
|
|
|
|
100 |
|
101 |
features = {
|
102 |
"Lexical Diversity": lexical_diversity_norm,
|
@@ -161,7 +173,8 @@ def depth_analysis(input_text):
|
|
161 |
path=Path.unit_regular_polygon(num_vars),
|
162 |
)
|
163 |
spine.set_transform(
|
164 |
-
Affine2D().scale(0.5).translate(0.5, 0.5)
|
|
|
165 |
)
|
166 |
return {"polar": spine}
|
167 |
|
@@ -172,14 +185,19 @@ def depth_analysis(input_text):
|
|
172 |
theta = radar_factory(N, frame="polygon")
|
173 |
data = features.values()
|
174 |
labels = features.keys()
|
175 |
-
fig, ax = plt.subplots(
|
|
|
|
|
176 |
ax.plot(theta, data)
|
177 |
ax.fill(theta, data, alpha=0.4)
|
178 |
ax.set_varlabels(labels)
|
179 |
|
180 |
rgrids = np.linspace(0, 100, num=6)
|
181 |
ax.set_rgrids(
|
182 |
-
rgrids,
|
|
|
|
|
|
|
183 |
)
|
184 |
ax.grid(True, color="black", linestyle="-", linewidth=0.5, alpha=0.5)
|
185 |
|
|
|
62 |
"punctuation_diversity": (-0.21875, 0.53125),
|
63 |
"type_token_ratio": (0.33002482852189063, 1.0894414982357028),
|
64 |
"calculate_perplexity": (-25.110544681549072, 82.4620680809021),
|
65 |
+
"calculate_syntactic_tree_depth": (
|
66 |
+
1.8380681818181812,
|
67 |
+
10.997159090909092,
|
68 |
+
),
|
69 |
"hapax_legomena_ratio": (0.0830971690138207, 1.0302715687215778),
|
70 |
"mtld": (-84.03125000000001, 248.81875000000002),
|
71 |
}
|
|
|
75 |
determiner_use = determiners_frequency(input_text, nlp)
|
76 |
punctuation_variety = punctuation_diversity(input_text)
|
77 |
sentence_depth = calculate_syntactic_tree_depth(input_text, nlp)
|
78 |
+
perplexity = calculate_perplexity(
|
79 |
+
input_text, gpt2_model, gpt2_tokenizer, device
|
80 |
+
)
|
81 |
lexical_diversity = type_token_ratio(input_text)
|
82 |
unique_words = hapax_legomena_ratio(input_text)
|
83 |
vocabulary_stability = mtld(input_text)
|
84 |
|
85 |
# normalize between 0 and 100
|
86 |
vocabulary_level_norm = normalize(
|
87 |
+
vocabulary_level,
|
88 |
+
*usual_ranges["estimated_slightly_difficult_words_ratio"],
|
89 |
)
|
90 |
entity_ratio_norm = normalize(entity_ratio, *usual_ranges["entity_density"])
|
91 |
determiner_use_norm = normalize(
|
|
|
97 |
lexical_diversity_norm = normalize(
|
98 |
lexical_diversity, *usual_ranges["type_token_ratio"]
|
99 |
)
|
100 |
+
unique_words_norm = normalize(
|
101 |
+
unique_words, *usual_ranges["hapax_legomena_ratio"]
|
102 |
+
)
|
103 |
+
vocabulary_stability_norm = normalize(
|
104 |
+
vocabulary_stability, *usual_ranges["mtld"]
|
105 |
+
)
|
106 |
sentence_depth_norm = normalize(
|
107 |
sentence_depth, *usual_ranges["calculate_syntactic_tree_depth"]
|
108 |
)
|
109 |
+
perplexity_norm = normalize(
|
110 |
+
perplexity, *usual_ranges["calculate_perplexity"]
|
111 |
+
)
|
112 |
|
113 |
features = {
|
114 |
"Lexical Diversity": lexical_diversity_norm,
|
|
|
173 |
path=Path.unit_regular_polygon(num_vars),
|
174 |
)
|
175 |
spine.set_transform(
|
176 |
+
Affine2D().scale(0.5).translate(0.5, 0.5)
|
177 |
+
+ self.transAxes
|
178 |
)
|
179 |
return {"polar": spine}
|
180 |
|
|
|
185 |
theta = radar_factory(N, frame="polygon")
|
186 |
data = features.values()
|
187 |
labels = features.keys()
|
188 |
+
fig, ax = plt.subplots(
|
189 |
+
subplot_kw=dict(projection="radar"), figsize=(7.5, 5)
|
190 |
+
)
|
191 |
ax.plot(theta, data)
|
192 |
ax.fill(theta, data, alpha=0.4)
|
193 |
ax.set_varlabels(labels)
|
194 |
|
195 |
rgrids = np.linspace(0, 100, num=6)
|
196 |
ax.set_rgrids(
|
197 |
+
rgrids,
|
198 |
+
labels=[f"{round(r)}%" for r in rgrids],
|
199 |
+
fontsize=8,
|
200 |
+
color="black",
|
201 |
)
|
202 |
ax.grid(True, color="black", linestyle="-", linewidth=0.5, alpha=0.5)
|
203 |
|
app.py
CHANGED
@@ -47,6 +47,7 @@ def main(
|
|
47 |
month_to,
|
48 |
day_to,
|
49 |
domains_to_skip,
|
|
|
50 |
):
|
51 |
|
52 |
# formatted_tokens = plagiarism_check(
|
@@ -70,6 +71,7 @@ def main(
|
|
70 |
month_to,
|
71 |
day_to,
|
72 |
domains_to_skip,
|
|
|
73 |
)
|
74 |
depth_analysis_plot = depth_analysis(input)
|
75 |
bc_score = predict_bc_scores(input)
|
@@ -153,6 +155,13 @@ with gr.Blocks() as demo:
|
|
153 |
plag_option = gr.Radio(
|
154 |
["Standard", "Advanced"], label="Choose an option please."
|
155 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
with gr.Row():
|
158 |
with gr.Column():
|
@@ -307,6 +316,7 @@ with gr.Blocks() as demo:
|
|
307 |
month_to,
|
308 |
day_to,
|
309 |
domains_to_skip,
|
|
|
310 |
],
|
311 |
outputs=[
|
312 |
bcLabel,
|
@@ -347,6 +357,7 @@ with gr.Blocks() as demo:
|
|
347 |
month_to,
|
348 |
day_to,
|
349 |
domains_to_skip,
|
|
|
350 |
],
|
351 |
outputs=[
|
352 |
sentenceBreakdown,
|
|
|
47 |
month_to,
|
48 |
day_to,
|
49 |
domains_to_skip,
|
50 |
+
source_block_size,
|
51 |
):
|
52 |
|
53 |
# formatted_tokens = plagiarism_check(
|
|
|
71 |
month_to,
|
72 |
day_to,
|
73 |
domains_to_skip,
|
74 |
+
source_block_size,
|
75 |
)
|
76 |
depth_analysis_plot = depth_analysis(input)
|
77 |
bc_score = predict_bc_scores(input)
|
|
|
155 |
plag_option = gr.Radio(
|
156 |
["Standard", "Advanced"], label="Choose an option please."
|
157 |
)
|
158 |
+
with gr.Row():
|
159 |
+
source_block_size = gr.Dropdown(
|
160 |
+
choices=["1", "2", "3", "Paragraph"],
|
161 |
+
label="Source Check Granularity",
|
162 |
+
value="2",
|
163 |
+
interactive=True,
|
164 |
+
)
|
165 |
|
166 |
with gr.Row():
|
167 |
with gr.Column():
|
|
|
316 |
month_to,
|
317 |
day_to,
|
318 |
domains_to_skip,
|
319 |
+
source_block_size,
|
320 |
],
|
321 |
outputs=[
|
322 |
bcLabel,
|
|
|
357 |
month_to,
|
358 |
day_to,
|
359 |
domains_to_skip,
|
360 |
+
source_block_size,
|
361 |
],
|
362 |
outputs=[
|
363 |
sentenceBreakdown,
|
isotonic_regression_model.joblib
CHANGED
Binary files a/isotonic_regression_model.joblib and b/isotonic_regression_model.joblib differ
|
|
plagiarism.py
CHANGED
@@ -16,37 +16,36 @@ WORD = re.compile(r"\w+")
|
|
16 |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
17 |
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
38 |
|
39 |
|
40 |
-
# converts given text into a vector
|
41 |
def text_to_vector(text):
|
42 |
-
# uses the Regular expression above and gets all words
|
43 |
words = WORD.findall(text)
|
44 |
-
# returns a counter of all the words (count of number of occurences)
|
45 |
return Counter(words)
|
46 |
|
47 |
|
48 |
-
# returns cosine similarity of two words
|
49 |
-
# uses: text_to_vector(text) and get_cosine(v1,v2)
|
50 |
def cosineSim(text1, text2):
|
51 |
vector1 = text_to_vector(text1)
|
52 |
vector2 = text_to_vector(text2)
|
@@ -55,132 +54,61 @@ def cosineSim(text1, text2):
|
|
55 |
return cosine
|
56 |
|
57 |
|
58 |
-
def
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
embedding_2 = model.encode(text2, convert_to_tensor=True)
|
69 |
-
|
70 |
-
o = util.pytorch_cos_sim(embedding_1, embedding_2)
|
71 |
-
return o.item()
|
72 |
|
73 |
|
74 |
-
def
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
)
|
86 |
-
service = build("customsearch", "v1", developerKey=api_key)
|
87 |
-
for i, sentence in enumerate(sentences):
|
88 |
-
results = (
|
89 |
-
service.cse()
|
90 |
-
.list(q=sentence, cx=cse_id, sort=sorted_date, **kwargs)
|
91 |
-
.execute()
|
92 |
-
)
|
93 |
-
if "items" in results and len(results["items"]) > 0:
|
94 |
-
for count, link in enumerate(results["items"]):
|
95 |
-
# stop after 3 pages
|
96 |
-
if count >= 3:
|
97 |
-
break
|
98 |
-
# # skip user selected domains
|
99 |
-
# if any(
|
100 |
-
# ("." + domain) in link["link"] for domain in domains_to_skip
|
101 |
-
# ):
|
102 |
-
# continue
|
103 |
-
# clean up snippet of '...'
|
104 |
-
snippet = link["snippet"]
|
105 |
-
ind = snippet.find("...")
|
106 |
-
if ind < 20 and ind > 9:
|
107 |
-
snippet = snippet[ind + len("... ") :]
|
108 |
-
ind = snippet.find("...")
|
109 |
-
if ind > len(snippet) - 5:
|
110 |
-
snippet = snippet[:ind]
|
111 |
-
|
112 |
-
# update cosine similarity between snippet and given text
|
113 |
-
url = link["link"]
|
114 |
-
if url not in url_list:
|
115 |
-
url_list.append(url)
|
116 |
-
score_array.append([0] * len(sentences))
|
117 |
-
url_count[url] = url_count[url] + 1 if url in url_count else 1
|
118 |
-
if plag_option == "Standard":
|
119 |
-
score_array[url_list.index(url)][i] = cosineSim(
|
120 |
-
sentence, snippet
|
121 |
-
)
|
122 |
else:
|
123 |
-
|
124 |
-
|
125 |
-
)
|
126 |
-
return url_count, score_array
|
127 |
|
128 |
|
129 |
-
def
|
130 |
-
|
131 |
-
for para in text.split("\n\n"):
|
132 |
-
sents = sent_tokenize(para)
|
133 |
-
for i in range(len(sents)):
|
134 |
-
if (i % 2) == 0:
|
135 |
-
two_sents.append(sents[i])
|
136 |
-
else:
|
137 |
-
two_sents[len(two_sents) - 1] += " " + sents[i]
|
138 |
-
return two_sents
|
139 |
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
"March": "03",
|
145 |
-
"April": "04",
|
146 |
-
"May": "05",
|
147 |
-
"June": "06",
|
148 |
-
"July": "07",
|
149 |
-
"August": "08",
|
150 |
-
"September": "09",
|
151 |
-
"October": "10",
|
152 |
-
"November": "11",
|
153 |
-
"December": "12",
|
154 |
-
}
|
155 |
|
156 |
|
157 |
-
def
|
158 |
-
|
|
|
|
|
|
|
159 |
|
160 |
|
161 |
async def get_url_data(url, client):
|
162 |
try:
|
163 |
r = await client.get(url)
|
164 |
-
# print(r.status_code)
|
165 |
if r.status_code == 200:
|
166 |
-
# print("in")
|
167 |
soup = BeautifulSoup(r.content, "html.parser")
|
168 |
return soup
|
169 |
except Exception:
|
170 |
return None
|
171 |
|
172 |
|
173 |
-
def remove_punc(text):
|
174 |
-
res = re.sub(r"[^\w\s]", "", text)
|
175 |
-
return res
|
176 |
-
|
177 |
-
|
178 |
-
def split_ngrams(text, n):
|
179 |
-
# return n-grams of size n
|
180 |
-
words = text.split()
|
181 |
-
return [words[i : i + n] for i in range(len(words) - n + 1)]
|
182 |
-
|
183 |
-
|
184 |
async def parallel_scrap(urls):
|
185 |
async with httpx.AsyncClient(timeout=30) as client:
|
186 |
tasks = []
|
@@ -209,11 +137,6 @@ def process_with_multiprocessing(input_data):
|
|
209 |
return scores
|
210 |
|
211 |
|
212 |
-
def print2d(array):
|
213 |
-
for row in array:
|
214 |
-
print(row)
|
215 |
-
|
216 |
-
|
217 |
def map_sentence_url(sentences, score_array):
|
218 |
sentenceToMaxURL = [-1] * len(sentences)
|
219 |
for j in range(len(sentences)):
|
@@ -234,65 +157,59 @@ def map_sentence_url(sentences, score_array):
|
|
234 |
return sentenceToMaxURL
|
235 |
|
236 |
|
237 |
-
def
|
238 |
plag_option,
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
month_to,
|
245 |
-
day_to,
|
246 |
domains_to_skip,
|
|
|
|
|
|
|
247 |
):
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
color = color_map[prev_idx - 1]
|
274 |
-
index_part = f'<span style="background-color: {color}; padding: 2px;">[{prev_idx}]</span>'
|
275 |
-
formatted_sentence = f"<p>{combined_sentence} {index_part}</p>"
|
276 |
-
html_content += formatted_sentence
|
277 |
-
combined_sentence = ""
|
278 |
-
combined_sentence += " " + sentence
|
279 |
-
prev_idx = idx
|
280 |
-
|
281 |
-
if combined_sentence:
|
282 |
-
color = color_map[prev_idx - 1]
|
283 |
-
index_part = f'<span style="background-color: {color}; padding: 2px;">[{prev_idx}]</span>'
|
284 |
-
formatted_sentence = f"<p>{combined_sentence} {index_part}</p>"
|
285 |
-
html_content += formatted_sentence
|
286 |
-
|
287 |
-
html_content += "<hr>"
|
288 |
-
for url, score, idx in url_scores:
|
289 |
-
color = color_map[idx - 1]
|
290 |
-
formatted_url = f'<p style="background-color: {color}; padding: 5px;">({idx}) <b>{url}</b></p><p> --- Matching Score: {score}%</p>'
|
291 |
-
html_content += formatted_url
|
292 |
-
|
293 |
-
html_content += "</div>"
|
294 |
|
295 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
|
297 |
|
298 |
def plagiarism_check(
|
@@ -305,17 +222,20 @@ def plagiarism_check(
|
|
305 |
month_to,
|
306 |
day_to,
|
307 |
domains_to_skip,
|
|
|
308 |
):
|
309 |
api_key = "AIzaSyCLyCCpOPLZWuptuPAPSg8cUIZhdEMVf6g"
|
310 |
api_key = "AIzaSyA5VVwY1eEoIoflejObrxFDI0DJvtbmgW8"
|
|
|
|
|
311 |
# api_key = "AIzaSyCB61O70B8AC3l5Kk3KMoLb6DN37B7nqIk"
|
312 |
# api_key = "AIzaSyCg1IbevcTAXAPYeYreps6wYWDbU0Kz8tg"
|
313 |
-
|
314 |
cse_id = "851813e81162b4ed4"
|
315 |
|
316 |
url_scores = []
|
317 |
sentence_scores = []
|
318 |
-
sentences = split_sentence_blocks(input)
|
319 |
url_count = {}
|
320 |
score_array = []
|
321 |
url_list = []
|
@@ -384,3 +304,58 @@ def plagiarism_check(
|
|
384 |
)
|
385 |
|
386 |
return sentence_scores, url_scores
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
17 |
|
18 |
|
19 |
+
months = {
|
20 |
+
"January": "01",
|
21 |
+
"February": "02",
|
22 |
+
"March": "03",
|
23 |
+
"April": "04",
|
24 |
+
"May": "05",
|
25 |
+
"June": "06",
|
26 |
+
"July": "07",
|
27 |
+
"August": "08",
|
28 |
+
"September": "09",
|
29 |
+
"October": "10",
|
30 |
+
"November": "11",
|
31 |
+
"December": "12",
|
32 |
+
}
|
33 |
|
34 |
+
color_map = [
|
35 |
+
"#cf2323",
|
36 |
+
"#eb9d59",
|
37 |
+
"#c2ad36",
|
38 |
+
"#e1ed72",
|
39 |
+
"#c2db76",
|
40 |
+
"#a2db76",
|
41 |
+
]
|
42 |
|
43 |
|
|
|
44 |
def text_to_vector(text):
|
|
|
45 |
words = WORD.findall(text)
|
|
|
46 |
return Counter(words)
|
47 |
|
48 |
|
|
|
|
|
49 |
def cosineSim(text1, text2):
|
50 |
vector1 = text_to_vector(text1)
|
51 |
vector2 = text_to_vector(text2)
|
|
|
54 |
return cosine
|
55 |
|
56 |
|
57 |
+
def get_cosine(vec1, vec2):
|
58 |
+
intersection = set(vec1.keys()) & set(vec2.keys())
|
59 |
+
numerator = sum([vec1[x] * vec2[x] for x in intersection])
|
60 |
+
sum1 = sum([vec1[x] ** 2 for x in vec1.keys()])
|
61 |
+
sum2 = sum([vec2[x] ** 2 for x in vec2.keys()])
|
62 |
+
denominator = math.sqrt(sum1) * math.sqrt(sum2)
|
63 |
+
if denominator == 0:
|
64 |
+
return 0.0
|
65 |
+
else:
|
66 |
+
return float(numerator) / denominator
|
|
|
|
|
|
|
|
|
67 |
|
68 |
|
69 |
+
def split_sentence_blocks(text, size):
|
70 |
+
if size == "Paragraph":
|
71 |
+
blocks = text.split("\n")
|
72 |
+
return blocks
|
73 |
+
else:
|
74 |
+
blocks = []
|
75 |
+
size = int(size)
|
76 |
+
for para in text.split("\n\n"):
|
77 |
+
sents = sent_tokenize(para)
|
78 |
+
for i in range(len(sents)):
|
79 |
+
if (i % size) == 0:
|
80 |
+
blocks.append(sents[i])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
else:
|
82 |
+
blocks[int(i / size)] += " " + sents[i]
|
83 |
+
return blocks
|
|
|
|
|
84 |
|
85 |
|
86 |
+
def build_date(year=2024, month="March", day=1):
|
87 |
+
return f"{year}{months[month]}{day}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
|
90 |
+
def split_ngrams(text, n):
|
91 |
+
words = text.split()
|
92 |
+
return [words[i : i + n] for i in range(len(words) - n + 1)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
|
95 |
+
def sentence_similarity(text1, text2):
|
96 |
+
embedding_1 = model.encode(text1, convert_to_tensor=True)
|
97 |
+
embedding_2 = model.encode(text2, convert_to_tensor=True)
|
98 |
+
o = util.pytorch_cos_sim(embedding_1, embedding_2)
|
99 |
+
return o.item()
|
100 |
|
101 |
|
102 |
async def get_url_data(url, client):
|
103 |
try:
|
104 |
r = await client.get(url)
|
|
|
105 |
if r.status_code == 200:
|
|
|
106 |
soup = BeautifulSoup(r.content, "html.parser")
|
107 |
return soup
|
108 |
except Exception:
|
109 |
return None
|
110 |
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
async def parallel_scrap(urls):
|
113 |
async with httpx.AsyncClient(timeout=30) as client:
|
114 |
tasks = []
|
|
|
137 |
return scores
|
138 |
|
139 |
|
|
|
|
|
|
|
|
|
|
|
140 |
def map_sentence_url(sentences, score_array):
|
141 |
sentenceToMaxURL = [-1] * len(sentences)
|
142 |
for j in range(len(sentences)):
|
|
|
157 |
return sentenceToMaxURL
|
158 |
|
159 |
|
160 |
+
def google_search(
|
161 |
plag_option,
|
162 |
+
sentences,
|
163 |
+
url_count,
|
164 |
+
score_array,
|
165 |
+
url_list,
|
166 |
+
sorted_date,
|
|
|
|
|
167 |
domains_to_skip,
|
168 |
+
api_key,
|
169 |
+
cse_id,
|
170 |
+
**kwargs,
|
171 |
):
|
172 |
+
service = build("customsearch", "v1", developerKey=api_key)
|
173 |
+
for i, sentence in enumerate(sentences):
|
174 |
+
results = (
|
175 |
+
service.cse()
|
176 |
+
.list(q=sentence, cx=cse_id, sort=sorted_date, **kwargs)
|
177 |
+
.execute()
|
178 |
+
)
|
179 |
+
if "items" in results and len(results["items"]) > 0:
|
180 |
+
for count, link in enumerate(results["items"]):
|
181 |
+
# stop after 3 pages
|
182 |
+
if count >= 3:
|
183 |
+
break
|
184 |
+
# skip user selected domains
|
185 |
+
if (domains_to_skip is not None) and any(
|
186 |
+
("." + domain) in link["link"] for domain in domains_to_skip
|
187 |
+
):
|
188 |
+
continue
|
189 |
+
# clean up snippet of '...'
|
190 |
+
snippet = link["snippet"]
|
191 |
+
ind = snippet.find("...")
|
192 |
+
if ind < 20 and ind > 9:
|
193 |
+
snippet = snippet[ind + len("... ") :]
|
194 |
+
ind = snippet.find("...")
|
195 |
+
if ind > len(snippet) - 5:
|
196 |
+
snippet = snippet[:ind]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
+
# update cosine similarity between snippet and given text
|
199 |
+
url = link["link"]
|
200 |
+
if url not in url_list:
|
201 |
+
url_list.append(url)
|
202 |
+
score_array.append([0] * len(sentences))
|
203 |
+
url_count[url] = url_count[url] + 1 if url in url_count else 1
|
204 |
+
if plag_option == "Standard":
|
205 |
+
score_array[url_list.index(url)][i] = cosineSim(
|
206 |
+
sentence, snippet
|
207 |
+
)
|
208 |
+
else:
|
209 |
+
score_array[url_list.index(url)][i] = sentence_similarity(
|
210 |
+
sentence, snippet
|
211 |
+
)
|
212 |
+
return url_count, score_array
|
213 |
|
214 |
|
215 |
def plagiarism_check(
|
|
|
222 |
month_to,
|
223 |
day_to,
|
224 |
domains_to_skip,
|
225 |
+
source_block_size,
|
226 |
):
|
227 |
api_key = "AIzaSyCLyCCpOPLZWuptuPAPSg8cUIZhdEMVf6g"
|
228 |
api_key = "AIzaSyA5VVwY1eEoIoflejObrxFDI0DJvtbmgW8"
|
229 |
+
# api_key = "AIzaSyCLyCCpOPLZWuptuPAPSg8cUIZhdEMVf6g"
|
230 |
+
# api_key = "AIzaSyCS1WQDMl1IMjaXtwSd_2rA195-Yc4psQE"
|
231 |
# api_key = "AIzaSyCB61O70B8AC3l5Kk3KMoLb6DN37B7nqIk"
|
232 |
# api_key = "AIzaSyCg1IbevcTAXAPYeYreps6wYWDbU0Kz8tg"
|
233 |
+
api_key = "AIzaSyA5VVwY1eEoIoflejObrxFDI0DJvtbmgW8"
|
234 |
cse_id = "851813e81162b4ed4"
|
235 |
|
236 |
url_scores = []
|
237 |
sentence_scores = []
|
238 |
+
sentences = split_sentence_blocks(input, source_block_size)
|
239 |
url_count = {}
|
240 |
score_array = []
|
241 |
url_list = []
|
|
|
304 |
)
|
305 |
|
306 |
return sentence_scores, url_scores
|
307 |
+
|
308 |
+
|
309 |
+
def html_highlight(
|
310 |
+
plag_option,
|
311 |
+
input,
|
312 |
+
year_from,
|
313 |
+
month_from,
|
314 |
+
day_from,
|
315 |
+
year_to,
|
316 |
+
month_to,
|
317 |
+
day_to,
|
318 |
+
domains_to_skip,
|
319 |
+
source_block_size,
|
320 |
+
):
|
321 |
+
sentence_scores, url_scores = plagiarism_check(
|
322 |
+
plag_option,
|
323 |
+
input,
|
324 |
+
year_from,
|
325 |
+
month_from,
|
326 |
+
day_from,
|
327 |
+
year_to,
|
328 |
+
month_to,
|
329 |
+
day_to,
|
330 |
+
domains_to_skip,
|
331 |
+
source_block_size,
|
332 |
+
)
|
333 |
+
|
334 |
+
html_content = "<link href='https://fonts.googleapis.com/css?family=Roboto' rel='stylesheet'>\n<div style='font-family: {font}; border: 2px solid black; background-color: #333333; padding: 10px; color: #FFFFFF;'>"
|
335 |
+
prev_idx = None
|
336 |
+
combined_sentence = ""
|
337 |
+
for sentence, _, _, idx in sentence_scores:
|
338 |
+
if idx != prev_idx and prev_idx is not None:
|
339 |
+
color = color_map[prev_idx - 1]
|
340 |
+
index_part = f'<span style="background-color: {color}; padding: 2px;">[{prev_idx}]</span>'
|
341 |
+
formatted_sentence = f"<p>{combined_sentence} {index_part}</p>"
|
342 |
+
html_content += formatted_sentence
|
343 |
+
combined_sentence = ""
|
344 |
+
combined_sentence += " " + sentence
|
345 |
+
prev_idx = idx
|
346 |
+
|
347 |
+
if combined_sentence:
|
348 |
+
color = color_map[prev_idx - 1]
|
349 |
+
index_part = f'<span style="background-color: {color}; padding: 2px;">[{prev_idx}]</span>'
|
350 |
+
formatted_sentence = f"<p>{combined_sentence} {index_part}</p>"
|
351 |
+
html_content += formatted_sentence
|
352 |
+
|
353 |
+
html_content += "<hr>"
|
354 |
+
for url, score, idx in url_scores:
|
355 |
+
color = color_map[idx - 1]
|
356 |
+
formatted_url = f'<p style="background-color: {color}; padding: 5px;">({idx}) <b>{url}</b></p><p> --- Matching Score: {score}%</p>'
|
357 |
+
html_content += formatted_url
|
358 |
+
|
359 |
+
html_content += "</div>"
|
360 |
+
|
361 |
+
return html_content
|
predictors.py
CHANGED
@@ -1,23 +1,11 @@
|
|
1 |
-
import requests
|
2 |
-
import httpx
|
3 |
import torch
|
4 |
-
import re
|
5 |
-
from bs4 import BeautifulSoup
|
6 |
import numpy as np
|
7 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
8 |
-
import asyncio
|
9 |
-
from evaluate import load
|
10 |
-
from datetime import date
|
11 |
import nltk
|
12 |
-
from transformers import GPT2LMHeadModel, GPT2TokenizerFast
|
13 |
-
import plotly.graph_objects as go
|
14 |
import torch.nn.functional as F
|
15 |
import nltk
|
16 |
-
from unidecode import unidecode
|
17 |
-
import time
|
18 |
from scipy.special import softmax
|
19 |
import yaml
|
20 |
-
import os
|
21 |
from utils import *
|
22 |
import joblib
|
23 |
from optimum.bettertransformer import BetterTransformer
|
@@ -64,24 +52,9 @@ tokenizers_1on1 = {}
|
|
64 |
models_1on1 = {}
|
65 |
for model_name, model in zip(mc_label_map, text_1on1_models):
|
66 |
tokenizers_1on1[model_name] = AutoTokenizer.from_pretrained(model)
|
67 |
-
models_1on1[model_name] =
|
68 |
-
model
|
69 |
-
)
|
70 |
-
|
71 |
-
|
72 |
-
bias_model_checker = AutoModelForSequenceClassification.from_pretrained(bias_checker_model_name)
|
73 |
-
tokenizer = AutoTokenizer.from_pretrained(bias_checker_model_name)
|
74 |
-
bias_model_checker = BetterTransformer.transform(bias_model_checker, keep_original_model=False)
|
75 |
-
bias_checker = pipeline(
|
76 |
-
"text-classification",
|
77 |
-
model=bias_checker_model_name,
|
78 |
-
tokenizer=bias_checker_model_name,
|
79 |
-
)
|
80 |
-
gc.collect()
|
81 |
-
bias_corrector = pipeline(
|
82 |
-
"text2text-generation", model=bias_corrector_model_name, accelerator="ort"
|
83 |
-
|
84 |
-
)
|
85 |
|
86 |
# proxy models for explainability
|
87 |
mini_bc_model_name = "polygraf-ai/bc-model-bert-mini"
|
@@ -90,7 +63,9 @@ bc_model_mini = AutoModelForSequenceClassification.from_pretrained(
|
|
90 |
mini_bc_model_name
|
91 |
).to(device_needed)
|
92 |
mini_humanizer_model_name = "polygraf-ai/quillbot-detector-bert-mini-9K"
|
93 |
-
humanizer_tokenizer_mini = AutoTokenizer.from_pretrained(
|
|
|
|
|
94 |
humanizer_model_mini = AutoModelForSequenceClassification.from_pretrained(
|
95 |
mini_humanizer_model_name
|
96 |
).to(device_needed)
|
@@ -289,9 +264,52 @@ def predict_mc(model, tokenizer, text):
|
|
289 |
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
|
290 |
return output_norm
|
291 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
def predict_bc_scores(input):
|
293 |
bc_scores = []
|
294 |
-
samples_len_bc = len(
|
|
|
|
|
295 |
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
296 |
for i in range(samples_len_bc):
|
297 |
cleaned_text_bc = remove_special_characters(segments_bc[i])
|
@@ -300,7 +318,9 @@ def predict_bc_scores(input):
|
|
300 |
bc_scores_array = np.array(bc_scores)
|
301 |
average_bc_scores = np.mean(bc_scores_array, axis=0)
|
302 |
bc_score_list = average_bc_scores.tolist()
|
303 |
-
print(
|
|
|
|
|
304 |
# isotonic regression calibration
|
305 |
ai_score = iso_reg.predict([bc_score_list[1]])[0]
|
306 |
human_score = 1 - ai_score
|
@@ -335,7 +355,9 @@ def predict_1on1_combined(input):
|
|
335 |
|
336 |
|
337 |
def predict_1on1_single(input, model):
|
338 |
-
predictions = predict_1on1(
|
|
|
|
|
339 |
return predictions
|
340 |
|
341 |
|
@@ -347,7 +369,9 @@ def predict_mc_scores(input, models):
|
|
347 |
print(f"Models to Test: {models}")
|
348 |
# BC SCORE
|
349 |
bc_scores = []
|
350 |
-
samples_len_bc = len(
|
|
|
|
|
351 |
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
352 |
for i in range(samples_len_bc):
|
353 |
cleaned_text_bc = remove_special_characters(segments_bc[i])
|
@@ -356,24 +380,30 @@ def predict_mc_scores(input, models):
|
|
356 |
bc_scores_array = np.array(bc_scores)
|
357 |
average_bc_scores = np.mean(bc_scores_array, axis=0)
|
358 |
bc_score_list = average_bc_scores.tolist()
|
359 |
-
print(
|
|
|
|
|
360 |
# isotonic regression calibration
|
361 |
ai_score = iso_reg.predict([bc_score_list[1]])[0]
|
362 |
human_score = 1 - ai_score
|
363 |
bc_score = {"AI": ai_score, "HUMAN": human_score}
|
364 |
print(f"Calibration BC scores: AI: {ai_score}, HUMAN: {human_score}")
|
365 |
-
|
366 |
# MC SCORE
|
367 |
if len(models) > 1:
|
368 |
print("Starting MC")
|
369 |
mc_scores = []
|
370 |
-
segments_mc = split_text_allow_complete_sentences_nltk(
|
|
|
|
|
371 |
samples_len_mc = len(
|
372 |
split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
373 |
)
|
374 |
for i in range(samples_len_mc):
|
375 |
cleaned_text_mc = remove_special_characters(segments_mc[i])
|
376 |
-
mc_score = predict_mc(
|
|
|
|
|
377 |
mc_scores.append(mc_score)
|
378 |
mc_scores_array = np.array(mc_scores)
|
379 |
average_mc_scores = np.mean(mc_scores_array, axis=0)
|
@@ -383,7 +413,9 @@ def predict_mc_scores(input, models):
|
|
383 |
mc_score[label.upper()] = score
|
384 |
|
385 |
mc_score = {
|
386 |
-
key: mc_score[key.upper()]
|
|
|
|
|
387 |
}
|
388 |
total = sum(mc_score.values())
|
389 |
# Normalize each value by dividing it by the total
|
@@ -391,14 +423,16 @@ def predict_mc_scores(input, models):
|
|
391 |
sum_prob = 1 - bc_score["HUMAN"]
|
392 |
for key, value in mc_score.items():
|
393 |
mc_score[key] = value * sum_prob
|
394 |
-
print(
|
395 |
if sum_prob < 0.01:
|
396 |
mc_score = {}
|
397 |
|
398 |
elif len(models) == 1:
|
399 |
print("Starting 1on1")
|
400 |
mc_scores = []
|
401 |
-
segments_mc = split_text_allow_complete_sentences_nltk(
|
|
|
|
|
402 |
samples_len_mc = len(
|
403 |
split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
404 |
)
|
|
|
|
|
|
|
1 |
import torch
|
|
|
|
|
2 |
import numpy as np
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
|
|
|
|
4 |
import nltk
|
|
|
|
|
5 |
import torch.nn.functional as F
|
6 |
import nltk
|
|
|
|
|
7 |
from scipy.special import softmax
|
8 |
import yaml
|
|
|
9 |
from utils import *
|
10 |
import joblib
|
11 |
from optimum.bettertransformer import BetterTransformer
|
|
|
52 |
models_1on1 = {}
|
53 |
for model_name, model in zip(mc_label_map, text_1on1_models):
|
54 |
tokenizers_1on1[model_name] = AutoTokenizer.from_pretrained(model)
|
55 |
+
models_1on1[model_name] = (
|
56 |
+
AutoModelForSequenceClassification.from_pretrained(model).to(device)
|
57 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
# proxy models for explainability
|
60 |
mini_bc_model_name = "polygraf-ai/bc-model-bert-mini"
|
|
|
63 |
mini_bc_model_name
|
64 |
).to(device_needed)
|
65 |
mini_humanizer_model_name = "polygraf-ai/quillbot-detector-bert-mini-9K"
|
66 |
+
humanizer_tokenizer_mini = AutoTokenizer.from_pretrained(
|
67 |
+
mini_humanizer_model_name
|
68 |
+
)
|
69 |
humanizer_model_mini = AutoModelForSequenceClassification.from_pretrained(
|
70 |
mini_humanizer_model_name
|
71 |
).to(device_needed)
|
|
|
264 |
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
|
265 |
return output_norm
|
266 |
|
267 |
+
|
268 |
+
def predict_mc_scores(input):
|
269 |
+
bc_scores = []
|
270 |
+
mc_scores = []
|
271 |
+
|
272 |
+
samples_len_bc = len(
|
273 |
+
split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
274 |
+
)
|
275 |
+
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
276 |
+
for i in range(samples_len_bc):
|
277 |
+
cleaned_text_bc = remove_special_characters(segments_bc[i])
|
278 |
+
bc_score = predict_bc(text_bc_model, text_bc_tokenizer, cleaned_text_bc)
|
279 |
+
bc_scores.append(bc_score)
|
280 |
+
bc_scores_array = np.array(bc_scores)
|
281 |
+
average_bc_scores = np.mean(bc_scores_array, axis=0)
|
282 |
+
bc_score_list = average_bc_scores.tolist()
|
283 |
+
bc_score = {"AI": bc_score_list[1], "HUMAN": bc_score_list[0]}
|
284 |
+
segments_mc = split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
285 |
+
samples_len_mc = len(
|
286 |
+
split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
287 |
+
)
|
288 |
+
for i in range(samples_len_mc):
|
289 |
+
cleaned_text_mc = remove_special_characters(segments_mc[i])
|
290 |
+
mc_score = predict_mc(text_mc_model, text_mc_tokenizer, cleaned_text_mc)
|
291 |
+
mc_scores.append(mc_score)
|
292 |
+
mc_scores_array = np.array(mc_scores)
|
293 |
+
average_mc_scores = np.mean(mc_scores_array, axis=0)
|
294 |
+
mc_score_list = average_mc_scores.tolist()
|
295 |
+
mc_score = {}
|
296 |
+
for score, label in zip(mc_score_list, mc_label_map):
|
297 |
+
mc_score[label.upper()] = score
|
298 |
+
|
299 |
+
sum_prob = 1 - bc_score["HUMAN"]
|
300 |
+
for key, value in mc_score.items():
|
301 |
+
mc_score[key] = value * sum_prob
|
302 |
+
if sum_prob < 0.01:
|
303 |
+
mc_score = {}
|
304 |
+
|
305 |
+
return mc_score
|
306 |
+
|
307 |
+
|
308 |
def predict_bc_scores(input):
|
309 |
bc_scores = []
|
310 |
+
samples_len_bc = len(
|
311 |
+
split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
312 |
+
)
|
313 |
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
314 |
for i in range(samples_len_bc):
|
315 |
cleaned_text_bc = remove_special_characters(segments_bc[i])
|
|
|
318 |
bc_scores_array = np.array(bc_scores)
|
319 |
average_bc_scores = np.mean(bc_scores_array, axis=0)
|
320 |
bc_score_list = average_bc_scores.tolist()
|
321 |
+
print(
|
322 |
+
f"Original BC scores: AI: {bc_score_list[1]}, HUMAN: {bc_score_list[0]}"
|
323 |
+
)
|
324 |
# isotonic regression calibration
|
325 |
ai_score = iso_reg.predict([bc_score_list[1]])[0]
|
326 |
human_score = 1 - ai_score
|
|
|
355 |
|
356 |
|
357 |
def predict_1on1_single(input, model):
|
358 |
+
predictions = predict_1on1(
|
359 |
+
models_1on1[model], tokenizers_1on1[model], input
|
360 |
+
)[1]
|
361 |
return predictions
|
362 |
|
363 |
|
|
|
369 |
print(f"Models to Test: {models}")
|
370 |
# BC SCORE
|
371 |
bc_scores = []
|
372 |
+
samples_len_bc = len(
|
373 |
+
split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
374 |
+
)
|
375 |
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
|
376 |
for i in range(samples_len_bc):
|
377 |
cleaned_text_bc = remove_special_characters(segments_bc[i])
|
|
|
380 |
bc_scores_array = np.array(bc_scores)
|
381 |
average_bc_scores = np.mean(bc_scores_array, axis=0)
|
382 |
bc_score_list = average_bc_scores.tolist()
|
383 |
+
print(
|
384 |
+
f"Original BC scores: AI: {bc_score_list[1]}, HUMAN: {bc_score_list[0]}"
|
385 |
+
)
|
386 |
# isotonic regression calibration
|
387 |
ai_score = iso_reg.predict([bc_score_list[1]])[0]
|
388 |
human_score = 1 - ai_score
|
389 |
bc_score = {"AI": ai_score, "HUMAN": human_score}
|
390 |
print(f"Calibration BC scores: AI: {ai_score}, HUMAN: {human_score}")
|
391 |
+
|
392 |
# MC SCORE
|
393 |
if len(models) > 1:
|
394 |
print("Starting MC")
|
395 |
mc_scores = []
|
396 |
+
segments_mc = split_text_allow_complete_sentences_nltk(
|
397 |
+
input, type_det="mc"
|
398 |
+
)
|
399 |
samples_len_mc = len(
|
400 |
split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
401 |
)
|
402 |
for i in range(samples_len_mc):
|
403 |
cleaned_text_mc = remove_special_characters(segments_mc[i])
|
404 |
+
mc_score = predict_mc(
|
405 |
+
text_mc_model, text_mc_tokenizer, cleaned_text_mc
|
406 |
+
)
|
407 |
mc_scores.append(mc_score)
|
408 |
mc_scores_array = np.array(mc_scores)
|
409 |
average_mc_scores = np.mean(mc_scores_array, axis=0)
|
|
|
413 |
mc_score[label.upper()] = score
|
414 |
|
415 |
mc_score = {
|
416 |
+
key: mc_score[key.upper()]
|
417 |
+
for key in models
|
418 |
+
if key.upper() in mc_score
|
419 |
}
|
420 |
total = sum(mc_score.values())
|
421 |
# Normalize each value by dividing it by the total
|
|
|
423 |
sum_prob = 1 - bc_score["HUMAN"]
|
424 |
for key, value in mc_score.items():
|
425 |
mc_score[key] = value * sum_prob
|
426 |
+
print("MC Score:", mc_score)
|
427 |
if sum_prob < 0.01:
|
428 |
mc_score = {}
|
429 |
|
430 |
elif len(models) == 1:
|
431 |
print("Starting 1on1")
|
432 |
mc_scores = []
|
433 |
+
segments_mc = split_text_allow_complete_sentences_nltk(
|
434 |
+
input, type_det="mc"
|
435 |
+
)
|
436 |
samples_len_mc = len(
|
437 |
split_text_allow_complete_sentences_nltk(input, type_det="mc")
|
438 |
)
|
requirements.txt
CHANGED
@@ -16,7 +16,7 @@ joblib
|
|
16 |
evaluate
|
17 |
tensorflow
|
18 |
keras
|
19 |
-
spacy
|
20 |
textstat
|
21 |
plotly
|
22 |
tqdm
|
|
|
16 |
evaluate
|
17 |
tensorflow
|
18 |
keras
|
19 |
+
spacy==3.7.2
|
20 |
textstat
|
21 |
plotly
|
22 |
tqdm
|
utils.py
CHANGED
@@ -1,28 +1,11 @@
|
|
1 |
-
from urllib.request import urlopen, Request
|
2 |
-
from googleapiclient.discovery import build
|
3 |
-
import requests
|
4 |
-
import httpx
|
5 |
import re
|
6 |
-
|
7 |
-
import re, math
|
8 |
-
from collections import Counter
|
9 |
-
import numpy as np
|
10 |
-
import asyncio
|
11 |
-
import nltk
|
12 |
from sentence_transformers import SentenceTransformer, util
|
13 |
-
import threading
|
14 |
-
import torch
|
15 |
import re
|
16 |
-
import numpy as np
|
17 |
-
import asyncio
|
18 |
-
from datetime import date
|
19 |
-
import nltk
|
20 |
from unidecode import unidecode
|
21 |
-
from scipy.special import softmax
|
22 |
from transformers import AutoTokenizer
|
23 |
import yaml
|
24 |
import fitz
|
25 |
-
import os
|
26 |
|
27 |
|
28 |
def remove_accents(input_str):
|
@@ -63,9 +46,6 @@ def update_character_count(text):
|
|
63 |
return f"{len(text)} characters"
|
64 |
|
65 |
|
66 |
-
nltk.download("punkt")
|
67 |
-
|
68 |
-
|
69 |
with open("config.yaml", "r") as file:
|
70 |
params = yaml.safe_load(file)
|
71 |
|
@@ -92,4 +72,4 @@ def extract_text_from_pdf(pdf_path):
|
|
92 |
|
93 |
|
94 |
WORD = re.compile(r"\w+")
|
95 |
-
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
|
|
|
|
|
|
|
|
|
|
1 |
import re
|
2 |
+
import re
|
|
|
|
|
|
|
|
|
|
|
3 |
from sentence_transformers import SentenceTransformer, util
|
|
|
|
|
4 |
import re
|
|
|
|
|
|
|
|
|
5 |
from unidecode import unidecode
|
|
|
6 |
from transformers import AutoTokenizer
|
7 |
import yaml
|
8 |
import fitz
|
|
|
9 |
|
10 |
|
11 |
def remove_accents(input_str):
|
|
|
46 |
return f"{len(text)} characters"
|
47 |
|
48 |
|
|
|
|
|
|
|
49 |
with open("config.yaml", "r") as file:
|
50 |
params = yaml.safe_load(file)
|
51 |
|
|
|
72 |
|
73 |
|
74 |
WORD = re.compile(r"\w+")
|
75 |
+
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|