Spaces:
Sleeping
Sleeping
import re, textstat | |
from nltk import FreqDist | |
from nltk.corpus import stopwords | |
from nltk.tokenize import word_tokenize, sent_tokenize | |
import torch | |
import nltk | |
from tqdm import tqdm | |
nltk.download("punkt") | |
def normalize(value, min_value, max_value): | |
normalized_value = ((value - min_value) * 100) / (max_value - min_value) | |
return max(0, min(100, normalized_value)) | |
def preprocess_text1(text): | |
text = text.lower() | |
text = re.sub(r"[^\w\s]", "", text) # remove punctuation | |
stop_words = set(stopwords.words("english")) # remove stopwords | |
words = [word for word in text.split() if word not in stop_words] | |
words = [word for word in words if not word.isdigit()] # remove numbers | |
return words | |
def vocabulary_richness_ttr(words): | |
unique_words = set(words) | |
ttr = len(unique_words) / len(words) * 100 | |
return ttr | |
def calculate_gunning_fog(text): | |
"""range 0-20""" | |
gunning_fog = textstat.gunning_fog(text) | |
return gunning_fog | |
def calculate_automated_readability_index(text): | |
"""range 1-20""" | |
ari = textstat.automated_readability_index(text) | |
return ari | |
def calculate_flesch_reading_ease(text): | |
"""range 0-100""" | |
fre = textstat.flesch_reading_ease(text) | |
return fre | |
def preprocess_text2(text): | |
sentences = sent_tokenize(text) | |
words = [ | |
word.lower() | |
for sent in sentences | |
for word in word_tokenize(sent) | |
if word.isalnum() | |
] | |
stop_words = set(stopwords.words("english")) | |
words = [word for word in words if word not in stop_words] | |
return words, sentences | |
def calculate_average_sentence_length(sentences): | |
"""range 0-40 or 50 based on the histogram""" | |
total_words = sum(len(word_tokenize(sent)) for sent in sentences) | |
average_sentence_length = total_words / (len(sentences) + 0.0000001) | |
return average_sentence_length | |
def calculate_average_word_length(words): | |
"""range 0-8 based on the histogram""" | |
total_characters = sum(len(word) for word in words) | |
average_word_length = total_characters / (len(words) + 0.0000001) | |
return average_word_length | |
def calculate_max_depth(sent): | |
return max(len(list(token.ancestors)) for token in sent) | |
def calculate_syntactic_tree_depth(nlp, text): | |
"""0-10 based on the histogram""" | |
doc = nlp(text) | |
sentence_depths = [calculate_max_depth(sent) for sent in doc.sents] | |
average_depth = ( | |
sum(sentence_depths) / len(sentence_depths) if sentence_depths else 0 | |
) | |
return average_depth | |
def calculate_perplexity(text, model, tokenizer, device, stride=512): | |
"""range 0-30 based on the histogram""" | |
encodings = tokenizer(text, return_tensors="pt") | |
max_length = model.config.n_positions | |
seq_len = encodings.input_ids.size(1) | |
nlls = [] | |
prev_end_loc = 0 | |
for begin_loc in tqdm(range(0, seq_len, stride)): | |
end_loc = min(begin_loc + max_length, seq_len) | |
trg_len = ( | |
end_loc - prev_end_loc | |
) # may be different from stride on last loop | |
input_ids = encodings.input_ids[:, begin_loc:end_loc].to(device) | |
target_ids = input_ids.clone() | |
target_ids[:, :-trg_len] = -100 | |
with torch.no_grad(): | |
outputs = model(input_ids, labels=target_ids) | |
neg_log_likelihood = outputs.loss | |
nlls.append(neg_log_likelihood) | |
prev_end_loc = end_loc | |
if end_loc == seq_len: | |
break | |
ppl = torch.exp(torch.stack(nlls).mean()) | |
return ppl.item() | |