babelmachine / interfaces /emotion9.py
kovacsvi
added titles to interfaces
f7e1e22
import gradio as gr
import os
import torch
import numpy as np
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
from huggingface_hub import HfApi
from label_dicts import EMOTION9_LABEL_NAMES
HF_TOKEN = os.environ["hf_read"]
languages = [
"Czech", "English", "German", "Hungarian", "Polish", "Slovak"
]
domains = {
"parliamentary speech": "parlspeech",
}
def build_huggingface_path(language: str):
language = language.lower()
return f"poltextlab/xlm-roberta-large-pooled-{language}-emotions9"
def predict(text, model_id, tokenizer_id):
device = torch.device("cpu")
model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, token=HF_TOKEN)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
inputs = tokenizer(text,
max_length=512,
truncation=True,
padding="do_not_pad",
return_tensors="pt").to(device)
model.eval()
with torch.no_grad():
logits = model(**inputs).logits
probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
NUMS_DICT = {i: key for i, key in enumerate(sorted(EMOTION9_LABEL_NAMES.keys()))}
output_pred = {f"[{NUMS_DICT[i]}] {EMOTION9_LABEL_NAMES[NUMS_DICT[i]]}": probs[i] for i in np.argsort(probs)[::-1]}
output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>'
return output_pred, output_info
def predict_e6(text, language, domain):
model_id = build_huggingface_path(language)
tokenizer_id = "xlm-roberta-large"
return predict(text, model_id, tokenizer_id)
demo = gr.Interface(
title="Emotions (9) Babel Demo",
fn=predict_e6,
inputs=[gr.Textbox(lines=6, label="Input"),
gr.Dropdown(languages, label="Language"),
gr.Dropdown(domains.keys(), label="Domain")],
outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()])