Spaces:
Running
Running
import gradio as gr | |
import os | |
import torch | |
import numpy as np | |
import pandas as pd | |
from transformers import AutoModelForSequenceClassification | |
from transformers import AutoTokenizer | |
from huggingface_hub import HfApi | |
from huggingface_hub.utils._errors import RepositoryNotFoundError | |
from label_dicts import CAP_NUM_DICT, CAP_LABEL_NAMES | |
HF_TOKEN = os.environ["hf_read"] | |
languages = [ | |
"Danish", | |
"Dutch", | |
"English", | |
"French", | |
"German", | |
"Hungarian", | |
"Italian", | |
"Polish", | |
"Portuguese", | |
"Spanish", | |
"Czech", | |
"Slovak", | |
"Norwegian" | |
] | |
domains = { | |
"media": "media", | |
"social media": "social", | |
"parliamentary speech": "parlspeech", | |
"legislative documents": "legislative", | |
"executive speech": "execspeech", | |
"executive order": "execorder", | |
"party programs": "party", | |
"judiciary": "judiciary", | |
"budget": "budget", | |
"public opinion": "publicopinion", | |
"local government agenda": "localgovernment" | |
} | |
def check_huggingface_path(checkpoint_path: str): | |
try: | |
hf_api = HfApi(token=HF_TOKEN) | |
hf_api.model_info(checkpoint_path, token=HF_TOKEN) | |
return True | |
except RepositoryNotFoundError: | |
return False | |
def build_huggingface_path(language: str, domain: str): | |
language = language.lower() | |
base_path = "xlm-roberta-large" | |
lang_domain_path = f"poltextlab/{base_path}-{language}-{domain}-cap-v3" | |
lang_path = f"poltextlab/{base_path}-{language}-cap-v3" | |
path_map = { | |
"L": lang_path, | |
"L-D": lang_domain_path, | |
"X": lang_domain_path, | |
} | |
value = None | |
try: | |
lang_domain_table = pd.read_csv("language_domain_models.csv") | |
lang_domain_table["language"] = lang_domain_table["language"].str.lower() | |
lang_domain_table.columns = lang_domain_table.columns.str.lower() | |
# get the row for the language and them get the value from the domain column | |
row = lang_domain_table[(lang_domain_table["language"] == language)] | |
tmp = row.get(domain) | |
if not tmp.empty: | |
value = tmp.iloc[0] | |
except (AttributeError, FileNotFoundError): | |
value = None | |
if value and value in path_map: | |
model_path = path_map[value] | |
if check_huggingface_path(model_path): | |
# if the model is available on Huggingface, return the path | |
return model_path | |
else: | |
# if the model is not available on Huggingface, look for other models | |
filtered_path_map = {k: v for k, v in path_map.items() if k != value} | |
for k, v in filtered_path_map.items(): | |
if check_huggingface_path(v): | |
return v | |
elif check_huggingface_path(lang_domain_path): | |
return lang_domain_path | |
elif check_huggingface_path(lang_path): | |
return lang_path | |
else: | |
return "poltextlab/xlm-roberta-large-pooled-cap" | |
def predict(text, model_id, tokenizer_id): | |
device = torch.device("cpu") | |
model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", token=HF_TOKEN) | |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id) | |
inputs = tokenizer(text, | |
max_length=256, | |
truncation=True, | |
padding="do_not_pad", | |
return_tensors="pt").to(device) | |
model.eval() | |
with torch.no_grad(): | |
logits = model(**inputs).logits | |
probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten() | |
output_pred = {f"[{CAP_NUM_DICT[i]}] {CAP_LABEL_NAMES[CAP_NUM_DICT[i]]}": probs[i] for i in np.argsort(probs)[::-1]} | |
output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>' | |
return output_pred, output_info | |
def predict_cap(text, language, domain): | |
domain = domains[domain] | |
model_id = build_huggingface_path(language, domain) | |
tokenizer_id = "xlm-roberta-large" | |
return predict(text, model_id, tokenizer_id) | |
demo = gr.Interface( | |
fn=predict_cap, | |
inputs=[gr.Textbox(lines=6, label="Input"), | |
gr.Dropdown(languages, label="Language"), | |
gr.Dropdown(domains.keys(), label="Domain")], | |
outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()]) |