Spaces:
Running
Running
kovacsvi
commited on
Commit
·
d68fe8b
1
Parent(s):
690a8d2
preload models
Browse files- interfaces/cap.py +5 -3
- utils.py +5 -2
interfaces/cap.py
CHANGED
@@ -12,6 +12,7 @@ from huggingface_hub import HfApi
|
|
12 |
from label_dicts import CAP_NUM_DICT, CAP_LABEL_NAMES
|
13 |
|
14 |
from .utils import is_disk_full, release_model
|
|
|
15 |
|
16 |
HF_TOKEN = os.environ["hf_read"]
|
17 |
|
@@ -83,11 +84,12 @@ def build_huggingface_path(language: str, domain: str):
|
|
83 |
else:
|
84 |
return "poltextlab/xlm-roberta-large-pooled-cap"
|
85 |
|
86 |
-
#@spaces.GPU
|
87 |
def predict(text, model_id, tokenizer_id):
|
88 |
device = torch.device("cpu")
|
89 |
-
|
90 |
-
|
|
|
|
|
91 |
|
92 |
inputs = tokenizer(text,
|
93 |
max_length=256,
|
|
|
12 |
from label_dicts import CAP_NUM_DICT, CAP_LABEL_NAMES
|
13 |
|
14 |
from .utils import is_disk_full, release_model
|
15 |
+
from ..utils import MODELS_PRELOADED, TOKENIZERS_PRELOADED
|
16 |
|
17 |
HF_TOKEN = os.environ["hf_read"]
|
18 |
|
|
|
84 |
else:
|
85 |
return "poltextlab/xlm-roberta-large-pooled-cap"
|
86 |
|
|
|
87 |
def predict(text, model_id, tokenizer_id):
|
88 |
device = torch.device("cpu")
|
89 |
+
|
90 |
+
print(MODELS_PRELOADED, TOKENIZERS_PRELOADED)
|
91 |
+
model = MODELS_PRELOADED[model_id].to(device)
|
92 |
+
tokenizer = TOKENIZERS_PRELOADED[tokenizer_id]
|
93 |
|
94 |
inputs = tokenizer(text,
|
95 |
max_length=256,
|
utils.py
CHANGED
@@ -25,6 +25,9 @@ from interfaces.ontolisst import build_huggingface_path as hf_ontolisst_path
|
|
25 |
|
26 |
from huggingface_hub import scan_cache_dir
|
27 |
|
|
|
|
|
|
|
28 |
HF_TOKEN = os.environ["hf_read"]
|
29 |
|
30 |
# should be a temporary solution
|
@@ -54,9 +57,9 @@ tokenizers = ["xlm-roberta-large"]
|
|
54 |
|
55 |
def download_hf_models():
|
56 |
for model_id in models:
|
57 |
-
AutoModelForSequenceClassification.from_pretrained(model_id, device_map="auto", token=HF_TOKEN)
|
58 |
for tokenizer_id in tokenizers:
|
59 |
-
AutoTokenizer.from_pretrained(tokenizer_id)
|
60 |
|
61 |
|
62 |
def df_h():
|
|
|
25 |
|
26 |
from huggingface_hub import scan_cache_dir
|
27 |
|
28 |
+
MODELS_PRELOADED = []
|
29 |
+
TOKENIZERS_PRELOADED = []
|
30 |
+
|
31 |
HF_TOKEN = os.environ["hf_read"]
|
32 |
|
33 |
# should be a temporary solution
|
|
|
57 |
|
58 |
def download_hf_models():
|
59 |
for model_id in models:
|
60 |
+
MODELS_PRELOADED[model_id] = AutoModelForSequenceClassification.from_pretrained(model_id, device_map="auto", token=HF_TOKEN)
|
61 |
for tokenizer_id in tokenizers:
|
62 |
+
TOKENIZERS_PRELOADED[tokenizer_id] = AutoTokenizer.from_pretrained(tokenizer_id)
|
63 |
|
64 |
|
65 |
def df_h():
|