Spaces:
Runtime error
Runtime error
4stra
commited on
App.py final. exporting files works.
Browse files
app.py
CHANGED
@@ -1,23 +1,51 @@
|
|
1 |
-
import
|
|
|
2 |
from textclassifier import TextClassifier as tc
|
3 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from functions import functions as f
|
5 |
import time
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
USER_LIST = ['jimmieakesson', 'BuschEbba', 'annieloof', 'JohanPehrson', 'bolund', 'martastenevi', 'SwedishPM',
|
8 |
'dadgostarnooshi']
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
UserNameDict = dict(zip(['Jimmie Åkesson', 'Ebba Busch', 'Annie Lööf', 'Johan Pehrson', 'Per Bolund',
|
11 |
'Märta Stenevi', 'Magdalena Andersson', 'Nooshi Dadgostar'], USER_LIST))
|
12 |
|
13 |
Columns = ['username', 'nlikes', 'nreplies', 'nretweets', 'main_topic', 'sub_topic', 'sentiment', 'target', 'tweet',
|
14 |
'date', 'urls', 'id', 'class_tuple', 'user_id']
|
|
|
|
|
15 |
|
16 |
|
17 |
-
def show_all_stats(
|
18 |
dataframe = pd.read_csv("{}/data/twitterdata.csv".format(tc.ROOT_PATH))
|
19 |
if SeeFullStats:
|
20 |
-
return dataframe
|
21 |
else:
|
22 |
return pd.DataFrame()
|
23 |
|
@@ -27,71 +55,433 @@ def fixChoicesCorrectOrder(Choices):
|
|
27 |
return ListChoices
|
28 |
|
29 |
|
30 |
-
def MatchNameToUser(
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
|
34 |
def main(From,
|
35 |
To,
|
36 |
-
Username,
|
37 |
UserNameChoices,
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
41 |
):
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
else:
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
|
|
|
|
54 |
text_classifier.run_main_pipeline()
|
55 |
dataframe = text_classifier.get_dataframe()
|
56 |
-
dataframe
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
-
|
65 |
-
|
66 |
-
demo
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
inputs=[gr.components.Textbox(label="From", value='2022-01-01'),
|
77 |
-
gr.components.Textbox(label="To", value='2022-01-25'),
|
78 |
-
gr.components.Textbox(label="Username", value="BuschEbba"),
|
79 |
-
gr.components.Checkboxgroup(
|
80 |
-
choices=['Jimmie Åkesson', 'Ebba Busch', 'Annie Lööf', 'Johan Pehrson', 'Per Bolund',
|
81 |
-
'Märta Stenevi',
|
82 |
-
'Magdalena Andersson', 'Nooshi Dadgostar'], label=""),
|
83 |
-
gr.components.Textbox(label="How many Tweets to Classify", value="20"),
|
84 |
-
gr.components.Checkboxgroup(label="Options",
|
85 |
-
choices=['username', 'nlikes', 'nreplies', 'nretweets', 'main_topic',
|
86 |
-
'sub_topic', 'sentiment', 'target', 'tweet', 'date', 'urls', 'id',
|
87 |
-
'class_tuple', 'user_id'],
|
88 |
-
value=['username', 'nlikes', 'nreplies', 'nretweets', 'main_topic',
|
89 |
-
'sub_topic', 'sentiment', 'target', 'tweet', 'date']
|
90 |
-
),
|
91 |
-
gr.components.Checkbox(label="Show full statistics")
|
92 |
-
],
|
93 |
-
outputs=[
|
94 |
-
gr.components.DataFrame(label="Summary statistics of the intervall you selected", max_rows=None),
|
95 |
-
gr.components.DataFrame(label="Summary statistics of the total database", max_rows=None, )])
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
demo.launch(share=False)
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
from textclassifier import TextClassifier as tc
|
4 |
import pandas as pd
|
5 |
+
import regex as re
|
6 |
+
|
7 |
+
from pathlib import Path
|
8 |
+
import glob
|
9 |
+
from math import sqrt
|
10 |
+
import os
|
11 |
+
import matplotlib
|
12 |
+
|
13 |
+
matplotlib.use('Agg')
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
from functions import functions as f
|
16 |
import time
|
17 |
|
18 |
+
|
19 |
+
SELECTED_COLUMN_DICT = { 'merged_topic': ['tweet', 'main_topic' , 'sub_topic' ,'synonym_topic' , 'cos_sim_topic', 'merged_topic' ],
|
20 |
+
'sentiment':['tweet', 'sentiment'],
|
21 |
+
'merged_target': ['tweet', 'target','synonym_target', 'cos_sim_target' , 'merged_target']
|
22 |
+
}
|
23 |
+
|
24 |
USER_LIST = ['jimmieakesson', 'BuschEbba', 'annieloof', 'JohanPehrson', 'bolund', 'martastenevi', 'SwedishPM',
|
25 |
'dadgostarnooshi']
|
26 |
|
27 |
+
USER_NAMES = ['Jimmie Åkesson', 'Ebba Busch', 'Annie Lööf', 'Johan Pehrson', 'Per Bolund', 'Märta Stenevi',
|
28 |
+
'Magdalena Andersson', 'Nooshi Dadgostar']
|
29 |
+
|
30 |
+
CHOICE_LIST = ['Topic', 'Sentiment', 'Target']
|
31 |
+
|
32 |
+
# PLOT_CHOICES_DICT = {'Topic': 'sub_topic', 'Sentiment': 'sentiment', 'Target': 'target'} I just changed its pavue to merged target and merged topic
|
33 |
+
PLOT_CHOICES_DICT = {'Topic': 'merged_topic', 'Sentiment': 'sentiment', 'Target': 'merged_target'}
|
34 |
+
PLOT_CHOICES_REVERSE_DICT = {'merged_topic': 'Topic', 'sentiment': 'Sentiment', 'merged_target': 'Target'}
|
35 |
+
# PLOT_CHOICES_REVERSE_DICT= {'sub_topic':'Topic', 'sentiment':'Sentiment' , 'target':'Target'}
|
36 |
UserNameDict = dict(zip(['Jimmie Åkesson', 'Ebba Busch', 'Annie Lööf', 'Johan Pehrson', 'Per Bolund',
|
37 |
'Märta Stenevi', 'Magdalena Andersson', 'Nooshi Dadgostar'], USER_LIST))
|
38 |
|
39 |
Columns = ['username', 'nlikes', 'nreplies', 'nretweets', 'main_topic', 'sub_topic', 'sentiment', 'target', 'tweet',
|
40 |
'date', 'urls', 'id', 'class_tuple', 'user_id']
|
41 |
+
num_tweet = 1000
|
42 |
+
LIMIT = 0.05
|
43 |
|
44 |
|
45 |
+
def show_all_stats(SeeFullStats):
|
46 |
dataframe = pd.read_csv("{}/data/twitterdata.csv".format(tc.ROOT_PATH))
|
47 |
if SeeFullStats:
|
48 |
+
return dataframe
|
49 |
else:
|
50 |
return pd.DataFrame()
|
51 |
|
|
|
55 |
return ListChoices
|
56 |
|
57 |
|
58 |
+
def MatchNameToUser(user_names):
|
59 |
+
users = []
|
60 |
+
for N in user_names:
|
61 |
+
users.append(UserNameDict[N])
|
62 |
+
return users
|
63 |
+
|
64 |
+
|
65 |
+
def convert_plot_choices(plot_choices):
|
66 |
+
return [PLOT_CHOICES_DICT[choice] for choice in plot_choices]
|
67 |
+
|
68 |
+
|
69 |
+
def convert_back_plot_choices(plot_choices_raw):
|
70 |
+
return [PLOT_CHOICES_REVERSE_DICT[choice] for choice in plot_choices_raw]
|
71 |
|
72 |
|
73 |
def main(From,
|
74 |
To,
|
|
|
75 |
UserNameChoices,
|
76 |
+
plot_choice,
|
77 |
+
save_selected ,
|
78 |
+
rb1, rb2, rb3, rb4, rb5, rb6, rb7, rb8,
|
79 |
+
v1, v2, v3, v4, v5, v6, v7, v8 ,
|
80 |
+
s1, s2, s3, s4, s5, s6, s7, s8
|
81 |
+
|
82 |
):
|
83 |
+
|
84 |
+
|
85 |
+
save_file_bool = s1, s2, s3, s4, s5, s6, s7, s8
|
86 |
+
|
87 |
+
def Add_Pychart(df, leaders, plot_choices):
|
88 |
+
df_list = []
|
89 |
+
pie_charts = []
|
90 |
+
return_list = []
|
91 |
+
leader_bool_list, plot_bool_list = convert_to_boolean(leaders, convert_back_plot_choices(plot_choices))
|
92 |
+
bool_list = []
|
93 |
+
for leader in leader_bool_list:
|
94 |
+
if leader:
|
95 |
+
for choice in plot_bool_list:
|
96 |
+
bool_list.append(choice)
|
97 |
+
else:
|
98 |
+
for i in range(len(plot_bool_list)):
|
99 |
+
bool_list.append(False)
|
100 |
+
for user in USER_NAMES: # leaders:
|
101 |
+
df_list.append((df.loc[df["username"] == UserNameDict[user]], user))
|
102 |
+
|
103 |
+
for db in df_list:
|
104 |
+
for col in PLOT_CHOICES_REVERSE_DICT: # plot_choices:
|
105 |
+
if col=='merged_target':
|
106 |
+
pie_charts.append(bar(db[0], col + ": " + db[1]))
|
107 |
+
else:
|
108 |
+
pie_charts.append(pie_chart(db[0], col, col + ": " + db[1]))
|
109 |
+
return pie_charts
|
110 |
+
|
111 |
+
def bar(db: pd.DataFrame, title):
|
112 |
+
'''This method adds a stacked bar diagram for each target and each sentiment
|
113 |
+
NOTE: The tweets without any target are not shown in the plot, we just show distribution of tweets that have a
|
114 |
+
target.
|
115 |
+
'''
|
116 |
+
if db.empty:
|
117 |
+
return None
|
118 |
else:
|
119 |
+
db['merged_target']= db["merged_target"].apply(lambda x: "other" if x == "ERROR_9000" or x == "ERROR_496" else x) # replacing Different Error type with string "other"
|
120 |
+
db['sentiment'] = db['sentiment'].apply(lambda x: re.sub('\s+', "", x)) # removing extra spaces in at the end and beginning of the sentiments.
|
121 |
+
# This can be removed after we remove all unnessary spaces from twitter data
|
122 |
+
all_targets= ['v', 'mp', 's', 'c', 'l', 'kd', 'm', 'sd', 'Red-Greens', 'The opposition']
|
123 |
+
db_new = db.loc[db["merged_target"] != "other"] # dataframe with other category removed
|
124 |
+
percent_target = (len(db_new) / len(db))*100
|
125 |
+
targets= db_new["merged_target"].value_counts().keys().to_list()
|
126 |
+
positive=[0]*len(all_targets)
|
127 |
+
negative=[0]*len(all_targets)
|
128 |
+
neutral=[0]*len(all_targets)
|
129 |
+
other =[0]*len(all_targets)
|
130 |
+
for i,target in enumerate(all_targets):
|
131 |
+
temp_db= db_new.loc[db_new["merged_target"] == target]
|
132 |
+
if temp_db.empty:
|
133 |
+
pass
|
134 |
+
else:
|
135 |
+
sent = temp_db['sentiment'].to_list()
|
136 |
+
positive[i] +=sent.count('positive')
|
137 |
+
negative[i] += sent.count('negative')
|
138 |
+
neutral[i] += sent.count('neutral')
|
139 |
+
other[i] += sent.count('other')
|
140 |
+
font1 = {'family': 'serif', 'color': 'blue', 'size': 10}
|
141 |
+
fig = plt.figure()
|
142 |
+
y1 = np.array(positive)/len(db_new)
|
143 |
+
y2 = np.array(negative)/len(db_new)
|
144 |
+
y3 = np.array(neutral)/len(db_new)
|
145 |
+
y4 = np.array(other)/len(db_new)
|
146 |
+
plt.bar(all_targets, y1 , color='g')
|
147 |
+
plt.bar(all_targets, y2 , bottom=y1, color='r')
|
148 |
+
plt.bar(all_targets, y3 , bottom=(y1+y2), color ='yellow')
|
149 |
+
plt.bar(all_targets, y4 , bottom=(y1+y2+y3) , color= 'b')
|
150 |
+
plt.xticks(rotation=15)
|
151 |
+
plt.ylim(0, 1)
|
152 |
+
plt.title( str(percent_target)[0:4] + "% "+ " of tweets have target. "+ "Number of tweets with target:" +str(len(db_new)),loc='right',fontdict=font1)
|
153 |
+
#plt.xlabel("Targets")
|
154 |
+
plt.ylabel("Procent")
|
155 |
+
plt.legend(["positive","negative", "neutral","other"])
|
156 |
+
return fig
|
157 |
|
158 |
+
def pie_chart(db, col_name, title):
|
159 |
+
if db.empty:
|
160 |
+
return None
|
161 |
+
else:
|
162 |
+
# db = db[col_name].value_counts()[:5] # Lägg till "Others sedan"
|
163 |
+
db = piechart_input(db, col_name, LIMIT)
|
164 |
+
labels = db[col_name].to_list()
|
165 |
+
sizes = db['frequency'].values
|
166 |
+
# explode = (0, 0.1, 0, 0, 0) # only "explode" the 2nd slice (i.e. 'Hogs')
|
167 |
+
font1 = {'family': 'serif', 'color': 'blue', 'size': 20}
|
168 |
+
fig = plt.figure()
|
169 |
+
plt.pie(sizes, labels=labels, radius=1, autopct='%1.1f%%')
|
170 |
+
plt.title(title, fontdict=font1)
|
171 |
+
return fig
|
172 |
|
173 |
+
text_classifier = tc.TextClassifier(from_date=From, to_date=To, user_list=MatchNameToUser(UserNameChoices),
|
174 |
+
num_tweets=num_tweet)
|
175 |
text_classifier.run_main_pipeline()
|
176 |
dataframe = text_classifier.get_dataframe()
|
177 |
+
# dataframe= pd.read_csv(os.path.dirname(
|
178 |
+
# os.path.dirname(os.path.abspath(__file__))) + "/politweet/data/twitterdata.csv") #
|
179 |
+
df = dataframe
|
180 |
+
|
181 |
+
|
182 |
+
if save_selected:
|
183 |
+
user_list = MatchNameToUser(UserNameChoices)
|
184 |
+
df_l=[]
|
185 |
+
for user in user_list:
|
186 |
+
df_l.append( pd.DataFrame(df.loc[df['username']== user]) )
|
187 |
+
|
188 |
+
selected_df= pd.concat(df_l).reset_index(drop=True)
|
189 |
+
export_to_download(selected_df,"selected_leaders")
|
190 |
+
save_selected_checkbox= [gr.Checkbox.update(interactive=False)]
|
191 |
+
|
192 |
+
|
193 |
+
pycharts = Add_Pychart(df, UserNameChoices, convert_plot_choices(plot_choice))
|
194 |
+
|
195 |
+
rb_components = [rb1, rb2, rb3, rb4, rb5, rb6, rb7, rb8] #radio_buttons
|
196 |
+
df_visibility_check = [v1,v2,v3,v4,v5,v6,v7,v8]
|
197 |
+
def get_selected_df_list(d_frame,save_or_no ,selected_users, radio, visiblity):
|
198 |
+
|
199 |
+
leader_bool_list = [True if leader in selected_users else False for leader in USER_NAMES]
|
200 |
+
df_list=[]
|
201 |
+
number_tweets = []
|
202 |
+
save_file_components_list =[]
|
203 |
+
for i , u_bool in enumerate(leader_bool_list):
|
204 |
+
user_df = d_frame.loc[d_frame['username'] == USER_LIST[i]]
|
205 |
+
number_tweets.append(gr.Number.update(value=len(user_df),visible=u_bool))
|
206 |
+
|
207 |
+
if save_or_no[i]:
|
208 |
+
export_to_download(pd.DataFrame(user_df) ,"one_leader" )
|
209 |
+
save_file_components_list.append( gr.Checkbox.update(visible=u_bool , interactive=False) )
|
210 |
+
else:
|
211 |
+
save_file_components_list.append( gr.Checkbox.update(visible=u_bool) )
|
212 |
+
|
213 |
+
if u_bool and visiblity[i]:
|
214 |
+
df_list.append( get_exemple_df(user_df,PLOT_CHOICES_DICT[radio[i]]) )
|
215 |
+
else:
|
216 |
+
df_list.append(None)
|
217 |
+
|
218 |
+
return df_list +number_tweets+save_file_components_list
|
219 |
+
|
220 |
+
return pycharts + save_selected_checkbox +get_selected_df_list(df,save_file_bool,list(UserNameChoices), rb_components, df_visibility_check)
|
221 |
+
|
222 |
+
''' END OF MAIN
|
223 |
+
####
|
224 |
+
#####
|
225 |
+
####
|
226 |
+
####
|
227 |
+
'''
|
228 |
+
|
229 |
+
|
230 |
+
|
231 |
+
|
232 |
+
|
233 |
+
def get_exemple_df(df:pd.DataFrame, column:str):
|
234 |
+
print(column)
|
235 |
+
df=df[SELECTED_COLUMN_DICT[column] ]
|
236 |
+
unique_labels = df[column].value_counts().keys()
|
237 |
+
stat=[]
|
238 |
+
for label in unique_labels:
|
239 |
+
df_temp = df.loc[df[column] == label]
|
240 |
+
if len(df_temp) > 5:
|
241 |
+
df_temp =df_temp[0:5]
|
242 |
+
stat.append(df_temp)
|
243 |
+
|
244 |
+
exemple_df= pd.concat(stat)
|
245 |
+
|
246 |
+
#stat =stat.reset_index(drop=True) just in case u want to reset indexing
|
247 |
+
|
248 |
+
return exemple_df
|
249 |
+
|
250 |
+
|
251 |
+
def export_to_download(_data_frame,_type:str ):
|
252 |
+
|
253 |
+
downloads_path = str(Path.home()) + "/Downloads/"
|
254 |
+
if _type == "one_leader":
|
255 |
+
file_name = _data_frame['username'].to_list()[0] #df['username'][0] + "_data"
|
256 |
+
else:
|
257 |
+
file_name = "selected_leaders"
|
258 |
+
full_path = downloads_path + file_name+".csv"
|
259 |
+
|
260 |
+
while full_path in glob.glob(downloads_path + "*"):
|
261 |
+
search_list = re.findall('\p{N}+', full_path)
|
262 |
+
if search_list:
|
263 |
+
index = search_list[0]
|
264 |
+
full_path = re.sub(index, str(int(index) + 1), full_path)
|
265 |
+
else:
|
266 |
+
suffix = " (1).csv"
|
267 |
+
full_path = re.sub('\.csv', suffix, full_path)
|
268 |
+
|
269 |
+
_data_frame.to_csv(full_path, index=False)
|
270 |
+
|
271 |
+
|
272 |
+
|
273 |
+
|
274 |
+
|
275 |
+
|
276 |
+
# , pie_chart(df, "main_topic"), pie_chart("target")
|
277 |
+
def piechart_input(df, column, limit):
|
278 |
+
df_len = len(df)
|
279 |
+
df_v = df[column].value_counts()
|
280 |
+
df_len = len(df)
|
281 |
+
if column == "sentiment":
|
282 |
+
ds_sentiment = df[column].apply(lambda x: re.sub("\s+", "", str(x)))
|
283 |
+
df_v = ds_sentiment.apply(lambda x: x if str(x).lower() == "positive" or str(x).lower() == "negative" or str(x).lower() == "neutral" else "other").value_counts()
|
284 |
+
elif column == "merged_target":
|
285 |
+
ds_target = df[column].apply(lambda x: "other" if x == "ERROR_9000" or x == "ERROR_496" else x)
|
286 |
+
df_v = ds_target.value_counts()
|
287 |
+
freq = df_v.to_list()
|
288 |
+
labels= df_v.keys().to_list
|
289 |
+
freq_dict = {}
|
290 |
+
freq_dict[column] = labels
|
291 |
+
freq_dict["frequency"] = freq
|
292 |
+
return pd.DataFrame.from_dict(freq_dict)
|
293 |
+
|
294 |
+
else:
|
295 |
+
df_v = df[column].value_counts()
|
296 |
+
freq = df_v.to_list()
|
297 |
+
labels = df_v.keys().to_list()
|
298 |
+
freq_other = 0
|
299 |
+
freq_dict = {column: [], "frequency": []}
|
300 |
+
for i in range(len(df_v)):
|
301 |
+
if freq[i] / df_len < limit:
|
302 |
+
freq_other += freq[i]
|
303 |
+
else:
|
304 |
+
freq_dict[column].append(labels[i])
|
305 |
+
freq_dict["frequency"].append(freq[i])
|
306 |
+
|
307 |
+
if "other" not in freq_dict[column]:
|
308 |
+
freq_dict[column].append("other")
|
309 |
+
freq_dict["frequency"].append(freq_other)
|
310 |
+
else:
|
311 |
+
ind_other = freq_dict[column].index("other")
|
312 |
+
freq_dict["frequency"][ind_other] += freq_other
|
313 |
+
|
314 |
+
return pd.DataFrame.from_dict(freq_dict)
|
315 |
+
|
316 |
+
|
317 |
+
def convert_to_boolean(leaders, plot_choices):
|
318 |
+
leaders_converted = [True if leader in leaders else False for leader in USER_NAMES]
|
319 |
+
plot_converted = [True if choice in plot_choices else False for choice in CHOICE_LIST]
|
320 |
+
|
321 |
+
return leaders_converted, plot_converted
|
322 |
+
|
323 |
|
324 |
+
|
325 |
+
|
326 |
+
|
327 |
+
|
328 |
+
|
329 |
+
|
330 |
+
|
331 |
+
|
332 |
+
|
333 |
+
|
334 |
+
|
335 |
+
|
336 |
+
def update_window(leaders: list, plot_choices: list,
|
337 |
+
v1, v2, v3, v4, v5, v6, v7, v8
|
338 |
+
):
|
339 |
+
|
340 |
+
|
341 |
+
leader_bool_list, plot_bool_list = convert_to_boolean(leaders, plot_choices)
|
342 |
+
|
343 |
+
bool_list = []
|
344 |
+
df_visiblity_bool = [v1, v2, v3, v4, v5, v6, v7, v8]
|
345 |
+
|
346 |
+
|
347 |
+
#this loop sets boolean for plots
|
348 |
+
for leader in leader_bool_list:
|
349 |
+
if leader:
|
350 |
+
for choice in plot_bool_list:
|
351 |
+
bool_list.append(choice)
|
352 |
+
#bool_list.append(True) ## this is for radio component
|
353 |
+
else:
|
354 |
+
for i in range(len(plot_bool_list)):
|
355 |
+
bool_list.append(False)
|
356 |
+
#bool_list.append(False)
|
357 |
+
|
358 |
+
update_blocks = []
|
359 |
+
update_plots = []
|
360 |
+
update_radio = []
|
361 |
+
update_nr_tweet =[]
|
362 |
+
update_checkbox = []
|
363 |
+
update_save_file_checkboxes =[]
|
364 |
+
update_df = []
|
365 |
+
|
366 |
+
#all_visual = block_list + plots + radio_list + nr_tweet_list + checkbox_list + saving_file_checkboxes + df_list
|
367 |
+
|
368 |
+
|
369 |
+
for i, vis_or_not in enumerate(leader_bool_list):
|
370 |
+
update_blocks.append(gr.Row.update(visible=vis_or_not))
|
371 |
+
update_blocks.append(gr.Row.update(visible=vis_or_not))
|
372 |
+
if vis_or_not:
|
373 |
+
update_blocks.append(gr.Row.update(visible=df_visiblity_bool[i]))
|
374 |
+
update_df.append(gr.DataFrame.update(visible=df_visiblity_bool[i]))
|
375 |
+
else:
|
376 |
+
|
377 |
+
update_blocks.append(gr.Row.update(visible=False ))
|
378 |
+
update_df.append(gr.DataFrame.update(visible= False ))
|
379 |
+
|
380 |
+
update_nr_tweet.append( gr.Number.update(visible = vis_or_not) )
|
381 |
+
update_radio.append(gr.Radio.update(visible=vis_or_not))
|
382 |
+
update_checkbox.append(gr.Checkbox.update(visible=vis_or_not))
|
383 |
+
update_save_file_checkboxes.append(gr.Checkbox.update(visible=vis_or_not))
|
384 |
+
for choice in bool_list:
|
385 |
+
update_plots.append(gr.Plot.update(visible=choice))
|
386 |
+
|
387 |
+
return update_blocks + update_plots + update_radio + update_nr_tweet + update_checkbox + update_save_file_checkboxes + update_df
|
388 |
+
|
389 |
+
|
390 |
+
|
391 |
+
|
392 |
+
|
393 |
+
|
394 |
+
|
395 |
+
|
396 |
+
|
397 |
+
|
398 |
+
|
399 |
+
|
400 |
+
|
401 |
+
|
402 |
+
def add_plots(user):
|
403 |
+
plot_list = []
|
404 |
+
for plot_type in PLOT_CHOICES_DICT:
|
405 |
+
plot_list.append(gr.Plot(label=plot_type+ " for " + user, visible=False))
|
406 |
+
return plot_list
|
407 |
+
|
408 |
+
|
409 |
+
|
410 |
+
|
411 |
+
|
412 |
+
def add_nbr_boxes():
|
413 |
+
return [gr.Number(value=0, label='Tweets by ' + user, visible=False) for user in USER_NAMES]
|
414 |
|
415 |
|
416 |
if __name__ == "__main__":
|
417 |
+
import gradio as gr
|
418 |
+
demo = gr.Blocks(title='Politweet')
|
419 |
+
with demo:
|
420 |
+
with gr.Column():
|
421 |
+
with gr.Row():
|
422 |
+
with gr.Column():
|
423 |
+
with gr.Row():
|
424 |
+
date1 = gr.Textbox(label="From", value='2022-05-10')
|
425 |
+
date2 = gr.Textbox(label="To", value='2022-05-30')
|
426 |
+
leaders = gr.Checkboxgroup(choices=USER_NAMES,
|
427 |
+
label="")
|
428 |
+
plot_choices = gr.CheckboxGroup(choices=CHOICE_LIST, label='Choose what to show')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
429 |
|
430 |
+
save_selected_data_checkbox= gr.Checkbox(label="Export selected data")
|
431 |
+
with gr.Row():
|
432 |
+
update = gr.Button('Apply')
|
433 |
+
btn = gr.Button("Run")
|
434 |
+
|
435 |
+
# show_stat = gr.Checkbox(label="Show full statistics", value=True)
|
436 |
+
# show_plots = gr.components.Checkbox(label='Show topics', value=True)
|
437 |
+
with gr.Column():
|
438 |
+
selected = gr.DataFrame(label="Summary statistics for the selected choices",
|
439 |
+
max_rows=None, visible=False)
|
440 |
+
# all_data = gr.components.DataFrame(label="Summary statistics of the total database", max_rows=None)
|
441 |
+
|
442 |
+
plots = []
|
443 |
+
radio_list = []
|
444 |
+
checkbox_list = []
|
445 |
+
df_list = []
|
446 |
+
block_list = []
|
447 |
+
saving_file_checkboxes =[]
|
448 |
+
nr_tweet_list = []
|
449 |
+
with gr.Column():
|
450 |
+
for i in range(len(USER_NAMES)):
|
451 |
+
block_list +=[gr.Row()] * 3
|
452 |
+
for i, leader in enumerate(USER_NAMES):
|
453 |
+
with gr.Row():
|
454 |
+
plots += add_plots(leader)
|
455 |
+
with gr.Row():
|
456 |
+
radio_list.append(gr.Radio(list(PLOT_CHOICES_DICT.keys()), visible=False ,interactive=True))
|
457 |
+
nr_tweet_list.append( gr.Number(visible=False) )
|
458 |
+
checkbox_list.append(gr.Checkbox(label="Show stats ",value=False,visible=False))
|
459 |
+
saving_file_checkboxes.append( gr.Checkbox(label= "Export file" , value=False , visible= False) )
|
460 |
+
|
461 |
+
with gr.Row():
|
462 |
+
df_list.append(gr.DataFrame(visible=False))
|
463 |
+
|
464 |
+
|
465 |
+
inp = [date1,
|
466 |
+
date2,
|
467 |
+
leaders,
|
468 |
+
plot_choices , save_selected_data_checkbox] + radio_list + checkbox_list + saving_file_checkboxes
|
469 |
+
|
470 |
+
output = plots + [save_selected_data_checkbox]+ df_list + nr_tweet_list + saving_file_checkboxes
|
471 |
+
|
472 |
+
|
473 |
+
all_visual = block_list + plots + radio_list + nr_tweet_list +checkbox_list + saving_file_checkboxes +df_list #+ df_list # df_comps
|
474 |
+
|
475 |
+
update_inp = [leaders, plot_choices] + checkbox_list
|
476 |
+
|
477 |
+
|
478 |
+
update.click(fn=update_window, inputs=update_inp, outputs=all_visual)
|
479 |
+
|
480 |
+
btn.click(fn=main, inputs=inp, outputs=output)
|
481 |
+
# input.change(fn=main, inputs=input, outputs=output)
|
482 |
demo.launch(share=False)
|
483 |
+
|
484 |
+
|
485 |
+
#df= pd.read_csv(os.getcwd()+"/data/twitterdata.csv")
|
486 |
+
|
487 |
+
#https://51285.gradio.app
|