Spaces:
Runtime error
Runtime error
pokeberrypie
commited on
Commit
•
9669d3c
1
Parent(s):
648aefb
Upload 10 files
Browse files- .gitattributes +35 -35
- ACCEPTABLE_USE_POLICY.txt +11 -0
- LICENSE.txt +82 -0
- README.md +234 -9
- config.json +25 -0
- generation_config.json +6 -0
- model.safetensors.index.json +651 -0
- special_tokens_map.json +16 -0
- tokenizer.json +0 -0
- tokenizer_config.json +8 -0
.gitattributes
CHANGED
@@ -1,35 +1,35 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
ACCEPTABLE_USE_POLICY.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FALCON 180B TII LICENSE VERSION 1.0
|
2 |
+
September 2023
|
3 |
+
falconllm.tii.ae
|
4 |
+
|
5 |
+
|
6 |
+
ACCEPTABLE USE POLICY
|
7 |
+
You agree not to use Falcon 180B or any Work or Derivative Work (as such terms are defined in the Falcon 180B TII License Version 1.0):
|
8 |
+
1. In any way that violates any applicable national, federal, state, local or international law or regulation;
|
9 |
+
2. For the purpose of exploiting, harming or attempting to exploit or harm minors and/or living beings in any way;
|
10 |
+
3. To generate or disseminate verifiably false information with the purpose of harming others; and/or
|
11 |
+
4. To defame, disparage or otherwise harass others.
|
LICENSE.txt
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FALCON 180B TII LICENSE VERSION 1.0
|
2 |
+
September 2023
|
3 |
+
falconllm.tii.ae
|
4 |
+
|
5 |
+
|
6 |
+
INTRODUCTORY NOTE
|
7 |
+
This license is, in part, based on the Apache License Version 2.0 (available at http://www.apache.org/licenses/), with a series of modifications. The contribution of the Apache License 2.0 to the framing of this document is acknowledged. Please read this license carefully, as it is different to other ‘open access’ licenses you may have encountered previously. Use of Falcon180B for hosted services may require a separate license.
|
8 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
9 |
+
1. Definitions.
|
10 |
+
“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 to 12 of this document.
|
11 |
+
“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.
|
12 |
+
“Legal Entity” shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, “control” means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.
|
13 |
+
“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this License.
|
14 |
+
“Source” form shall mean the preferred form for making modifications, including but not limited to software source code, training datasets used for training or fine tuning a machine learning model or artificial intelligence model, documentation source, and configuration files.
|
15 |
+
“Object” form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, a trained and/or fine-tuned machine learning model or artificial intelligence model, generated documentation, and conversions to other media types.
|
16 |
+
“Work” shall mean the work of authorship, which in relation to the initial release of Falcon 180B is in Object form only, but in the case of any and all Derivative Works means that Work whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below).
|
17 |
+
“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.
|
18 |
+
“Contribution” shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, “submitted” means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as “Not a Contribution.”
|
19 |
+
“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work.
|
20 |
+
"Acceptable Use Policy” means the latest version from time to time of the policy designated as such hosted at FalconLLM.tii.ae.
|
21 |
+
“Falcon 180B” shall mean TII’s 180 billion parameter Falcon large language model, initially made available in Object form only under this license at FalconLLM.tii.ae.
|
22 |
+
"Hosting Application Address” means Falconllm.partnerships@tii.ae.
|
23 |
+
“Hosting Use” has the meaning given in section 9 below.
|
24 |
+
“Hosting User” means someone who has applied to make Hosting Use of the Work and been granted permission by the Licensor to make such Hosting Use subject to a separate licence agreement.
|
25 |
+
“TII” shall mean the Technology Innovation Institute – Sole Proprietorship L.L.C., or any party nominated in writing by Technology Innovation Institute – Sole Proprietorship L.L.C. as its successor for the purposes of this License, or any party nominated in writing to be a successor to any successor for the purposes of this license.
|
26 |
+
|
27 |
+
2. Grant of Copyright License.
|
28 |
+
2.1. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.
|
29 |
+
2.2. Other than where you are a Hosting User in accordance with Section 9, Your copyright license to use the Work shall be royalty free and without charge.
|
30 |
+
|
31 |
+
3. Grant of Patent License.
|
32 |
+
3.1. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed.
|
33 |
+
3.2. Other than where you are a Hosting User in accordance with Section 9, Your patent license to use the Work shall be royalty free and without charge.
|
34 |
+
|
35 |
+
4. Redistribution.
|
36 |
+
4.1. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions:
|
37 |
+
(a) use-based restrictions incorporating the Acceptable Use Policy in the manner set out in Section 5 of this license, and which do not otherwise conflict with the Acceptable Use Policy, must be included as enforceable provisions by You in any type of legal agreement (e.g. a license) governing the use and/or distribution of the Work or any Derivative Works that You distribute;
|
38 |
+
(b) hosting-based restrictions as set out in Section 8 of this license, and which do not otherwise conflict with those provisions, must be included as enforceable provisions by You in any type of legal agreement (e.g. a license) governing the use and/or distribution of the Work or any Derivative Works that You distribute;
|
39 |
+
(c) You must give any other recipients of the Work or Derivative Works a copy of this License; and
|
40 |
+
(d) You must cause any modified files to carry prominent notices stating that You changed the files; and
|
41 |
+
(e) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and
|
42 |
+
(f) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License.
|
43 |
+
4.2. Subject to Section 6, You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License.
|
44 |
+
|
45 |
+
5. Acceptable Use
|
46 |
+
5.1. Subject to Section 5.3, your use of the Work or any Derivative Work must comply with the Acceptable Use Policy at all times. You shall procure that all persons using the Work or Derivative Work for you or on your behalf comply with the Acceptable Use Policy in their use.
|
47 |
+
5.2. You may not use the Work or any Derivative Work or any output from the Work or Derivative Work, whether directly or indirectly, to create other works for any purpose which conflicts with the Acceptable Use Policy.
|
48 |
+
5.3. The Acceptable Use Policy may be updated from time to time. You should monitor the web address at which the Acceptable Use Policy is hosted to ensure that your use of the Work or any Derivative Work complies with the updated Acceptable Use Policy.
|
49 |
+
|
50 |
+
6. Publication
|
51 |
+
6.1. You shall include prominently in any public statement regarding a Derivative Work the following statement:
|
52 |
+
“[name of relevant Derivative Work] is built using Falcon LLM technology from the Technology Innovation Institute”.
|
53 |
+
6.2. You may request from TII a reasonably adjusted version of the above statement to suit the publication the relevant statement is being made in. TII will not unreasonably withhold or delay approval of such a request.
|
54 |
+
|
55 |
+
7. Submission of Contributions.
|
56 |
+
7.1. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions.
|
57 |
+
7.2. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions.
|
58 |
+
|
59 |
+
8. Trademarks.
|
60 |
+
8.1. Except as required for compliance with Section 6 of this License, this License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file.
|
61 |
+
|
62 |
+
9. Hosting Use
|
63 |
+
9.1. Subject to section 9.2, "Hosting Use” means any use of the Work or a Derivative Work to offer shared instances or managed services based on the Work, any Derivative Work (including fine-tuned versions of a Work or Derivative Work) to third party users in an inference or finetuning API form.
|
64 |
+
9.2. The use of the Work or Derivative Works to provide applications and integrated end user products which use the Work or Derivative Work in the background shall not be considered Hosting Use.
|
65 |
+
9.3. Subject to Section 9.4, you are not licensed to use the Work or Derivative Work under this license for Hosting Use. Where You wish to make Hosting Use of Falcon 180B or any Work or Derivative Work, You must apply to TII for permission to make Hosting Use of that Work in writing via the Hosting Application Address, providing such information as may be required.
|
66 |
+
9.4. Where TII grants permission for You to make Hosting Use of the relevant Work, then for that purpose You shall be considered a Hosting User, and your use of Falcon 180B, the Work or Derivative Works shall be subject to the separate license granted by TII relating to that use.
|
67 |
+
|
68 |
+
10. Disclaimer of Warranty.
|
69 |
+
10.1. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License.
|
70 |
+
|
71 |
+
11. Limitation of Liability.
|
72 |
+
11.1. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages.
|
73 |
+
|
74 |
+
12. Accepting Warranty or Additional Liability.
|
75 |
+
12.1. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability.
|
76 |
+
|
77 |
+
END OF TERMS AND CONDITIONS
|
78 |
+
APPENDIX: How to apply the Falcon 180B TII License to your work.
|
79 |
+
To apply the Falcon 180B TII License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives.
|
80 |
+
Copyright [yyyy] [name of copyright owner] Licensed under the Falcon 180B TII License, Version 1.0 (the "License"); you may not use this file except in compliance with the License.
|
81 |
+
You may obtain a copy of the License at FalconLLM.tii.ae. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
82 |
+
See the License for the specific language governing permissions and limitations under the License.
|
README.md
CHANGED
@@ -1,9 +1,234 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tiiuae/falcon-refinedweb
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
- de
|
7 |
+
- es
|
8 |
+
- fr
|
9 |
+
inference: false
|
10 |
+
license: unknown
|
11 |
+
extra_gated_heading: "Acknowledge license to access the repository"
|
12 |
+
extra_gated_prompt: "You agree to the [Falcon-180B TII license](https://huggingface.co/spaces/tiiuae/falcon-180b-license/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/tiiuae/falcon-180b-license/blob/main/ACCEPTABLE_USE_POLICY.txt)."
|
13 |
+
extra_gated_button_content: "I agree to the terms and conditions of the Falcon-180B TII license and to the acceptable use policy"
|
14 |
+
---
|
15 |
+
|
16 |
+
# 🚀 Falcon-180B
|
17 |
+
|
18 |
+
**Falcon-180B is a 180B parameters causal decoder-only model built by [TII](https://www.tii.ae) and trained on 3,500B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) enhanced with curated corpora. It is made available under the [Falcon-180B TII License](https://huggingface.co/spaces/tiiuae/falcon-180b-license/blob/main/LICENSE.txt) and [Acceptable Use Policy](https://huggingface.co/spaces/tiiuae/falcon-180b-license/blob/main/ACCEPTABLE_USE_POLICY.txt).**
|
19 |
+
|
20 |
+
*Paper coming soon* 😊
|
21 |
+
|
22 |
+
|
23 |
+
🤗 To get started with Falcon (inference, finetuning, quantization, etc.), we recommend reading [this great blogpost from HF](https://hf.co/blog/falcon-180b) or this [one](https://huggingface.co/blog/falcon) from the release of the 40B!
|
24 |
+
Note that since the 180B is larger than what can easily be handled with `transformers`+`acccelerate`, we recommend using [Text Generation Inference](https://github.com/huggingface/text-generation-inference).
|
25 |
+
|
26 |
+
You will need **at least 400GB of memory** to swiftly run inference with Falcon-180B.
|
27 |
+
|
28 |
+
## Why use Falcon-180B?
|
29 |
+
|
30 |
+
* **It is the best open-access model currently available, and one of the best model overall.** Falcon-180B outperforms [LLaMA-2](https://huggingface.co/meta-llama/Llama-2-70b-hf), [StableLM](https://github.com/Stability-AI/StableLM), [RedPajama](https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-7B-v0.1), [MPT](https://huggingface.co/mosaicml/mpt-7b), etc. See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
|
31 |
+
* **It features an architecture optimized for inference**, with multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)).
|
32 |
+
* **It is made available under a permissive license allowing for commercial use**.
|
33 |
+
* ⚠️ **This is a raw, pretrained model, which should be further finetuned for most usecases.** If you are looking for a version better suited to taking generic instructions in a chat format, we recommend taking a look at [Falcon-180B-Chat](https://huggingface.co/tiiuae/falcon-180b-chat).
|
34 |
+
|
35 |
+
|
36 |
+
💸 **Looking for a smaller, less expensive model?** [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) and [Falcon-40B](https://huggingface.co/tiiuae/falcon-40b) are Falcon-180B's little brothers!
|
37 |
+
|
38 |
+
💥 **Falcon LLMs require PyTorch 2.0 for use with `transformers`!**
|
39 |
+
|
40 |
+
|
41 |
+
# Model Card for Falcon-180B
|
42 |
+
|
43 |
+
## Model Details
|
44 |
+
|
45 |
+
### Model Description
|
46 |
+
|
47 |
+
- **Developed by:** [https://www.tii.ae](https://www.tii.ae);
|
48 |
+
- **Model type:** Causal decoder-only;
|
49 |
+
- **Language(s) (NLP):** English, German, Spanish, French (and limited capabilities in Italian, Portuguese, Polish, Dutch, Romanian, Czech, Swedish);
|
50 |
+
- **License:** [Falcon-180B TII License](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) and [Acceptable Use Policy](https://huggingface.co/tiiuae/falcon-180B/blob/main/ACCEPTABLE_USE_POLICY.txt).
|
51 |
+
|
52 |
+
### Model Source
|
53 |
+
|
54 |
+
- **Paper:** *coming soon*.
|
55 |
+
|
56 |
+
## Uses
|
57 |
+
|
58 |
+
See the [acceptable use policy](https://huggingface.co/tiiuae/falcon-180B/blob/main/ACCEPTABLE_USE_POLICY.txt).
|
59 |
+
|
60 |
+
### Direct Use
|
61 |
+
|
62 |
+
Research on large language models; as a foundation for further specialization and finetuning for specific usecases (e.g., summarization, text generation, chatbot, etc.)
|
63 |
+
|
64 |
+
### Out-of-Scope Use
|
65 |
+
|
66 |
+
Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful.
|
67 |
+
|
68 |
+
## Bias, Risks, and Limitations
|
69 |
+
|
70 |
+
Falcon-180B is trained mostly on English, German, Spanish, French, with limited capabilities also in in Italian, Portuguese, Polish, Dutch, Romanian, Czech, Swedish. It will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online.
|
71 |
+
|
72 |
+
### Recommendations
|
73 |
+
|
74 |
+
We recommend users of Falcon-180B to consider finetuning it for the specific set of tasks of interest, and for guardrails and appropriate precautions to be taken for any production use.
|
75 |
+
|
76 |
+
## How to Get Started with the Model
|
77 |
+
|
78 |
+
To run inference with the model in full `bfloat16` precision you need approximately 8xA100 80GB or equivalent.
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
```python
|
83 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
84 |
+
import transformers
|
85 |
+
import torch
|
86 |
+
|
87 |
+
model = "tiiuae/falcon-180b"
|
88 |
+
|
89 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
90 |
+
pipeline = transformers.pipeline(
|
91 |
+
"text-generation",
|
92 |
+
model=model,
|
93 |
+
tokenizer=tokenizer,
|
94 |
+
torch_dtype=torch.bfloat16,
|
95 |
+
trust_remote_code=True,
|
96 |
+
device_map="auto",
|
97 |
+
)
|
98 |
+
sequences = pipeline(
|
99 |
+
"Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
|
100 |
+
max_length=200,
|
101 |
+
do_sample=True,
|
102 |
+
top_k=10,
|
103 |
+
num_return_sequences=1,
|
104 |
+
eos_token_id=tokenizer.eos_token_id,
|
105 |
+
)
|
106 |
+
for seq in sequences:
|
107 |
+
print(f"Result: {seq['generated_text']}")
|
108 |
+
|
109 |
+
```
|
110 |
+
|
111 |
+
## Training Details
|
112 |
+
|
113 |
+
### Training Data
|
114 |
+
|
115 |
+
Falcon-180B was trained on 3,500B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb), a high-quality filtered and deduplicated web dataset which we enhanced with curated corpora. Significant components from our curated copora were inspired by The Pile ([Gao et al., 2020](https://arxiv.org/abs/2101.00027)).
|
116 |
+
|
117 |
+
| **Data source** | **Fraction** | **Tokens** | **Sources** |
|
118 |
+
|--------------------|--------------|------------|-----------------------------------|
|
119 |
+
| [RefinedWeb-English](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) | 75% | 750B | massive web crawl |
|
120 |
+
| RefinedWeb-Europe | 7% | 70B | European massive web crawl |
|
121 |
+
| Books | 6% | 60B | |
|
122 |
+
| Conversations | 5% | 50B | Reddit, StackOverflow, HackerNews |
|
123 |
+
| Code | 5% | 50B | |
|
124 |
+
| Technical | 2% | 20B | arXiv, PubMed, USPTO, etc. |
|
125 |
+
|
126 |
+
RefinedWeb-Europe is made of the following languages:
|
127 |
+
|
128 |
+
| **Language** | **Fraction of multilingual data** | **Tokens** |
|
129 |
+
|--------------|-----------------------------------|------------|
|
130 |
+
| German | 26% | 18B |
|
131 |
+
| Spanish | 24% | 17B |
|
132 |
+
| French | 23% | 16B |
|
133 |
+
| _Italian_ | 7% | 5B |
|
134 |
+
| _Portuguese_ | 4% | 3B |
|
135 |
+
| _Polish_ | 4% | 3B |
|
136 |
+
| _Dutch_ | 4% | 3B |
|
137 |
+
| _Romanian_ | 3% | 2B |
|
138 |
+
| _Czech_ | 3% | 2B |
|
139 |
+
| _Swedish_ | 2% | 1B |
|
140 |
+
|
141 |
+
|
142 |
+
The data was tokenized with the Falcon tokenizer.
|
143 |
+
|
144 |
+
### Training Procedure
|
145 |
+
|
146 |
+
Falcon-180B was trained on up to 4,096 A100 40GB GPUs, using a 3D parallelism strategy (TP=8, PP=8, DP=64) combined with ZeRO.
|
147 |
+
|
148 |
+
#### Training Hyperparameters
|
149 |
+
|
150 |
+
| **Hyperparameter** | **Value** | **Comment** |
|
151 |
+
|--------------------|------------|-------------------------------------------|
|
152 |
+
| Precision | `bfloat16` | |
|
153 |
+
| Optimizer | AdamW | |
|
154 |
+
| Learning rate | 1.25e-4 | 4B tokens warm-up, cosine decay to 1.25e-5 |
|
155 |
+
| Weight decay | 1e-1 | |
|
156 |
+
| Z-loss | 1e-4 | |
|
157 |
+
| Batch size | 2048 | 100B tokens ramp-up |
|
158 |
+
|
159 |
+
|
160 |
+
#### Speeds, Sizes, Times
|
161 |
+
|
162 |
+
Training started in early 2023.
|
163 |
+
|
164 |
+
## Evaluation
|
165 |
+
|
166 |
+
*Paper coming soon.*
|
167 |
+
|
168 |
+
See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) for early results.
|
169 |
+
|
170 |
+
|
171 |
+
## Technical Specifications
|
172 |
+
|
173 |
+
### Model Architecture and Objective
|
174 |
+
|
175 |
+
Falcon-180B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token).
|
176 |
+
|
177 |
+
The architecture is broadly adapted from the GPT-3 paper ([Brown et al., 2020](https://arxiv.org/abs/2005.14165)), with the following differences:
|
178 |
+
|
179 |
+
* **Positionnal embeddings:** rotary ([Su et al., 2021](https://arxiv.org/abs/2104.09864));
|
180 |
+
* **Attention:** multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)) and FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135));
|
181 |
+
* **Decoder-block:** parallel attention/MLP with two layer norms.
|
182 |
+
|
183 |
+
For multiquery, we are using an internal variant which uses independent key and values per tensor parallel degree (so-called multigroup).
|
184 |
+
|
185 |
+
| **Hyperparameter** | **Value** | **Comment** |
|
186 |
+
|--------------------|-----------|----------------------------------------|
|
187 |
+
| Layers | 80 | |
|
188 |
+
| `d_model` | 14848 | |
|
189 |
+
| `head_dim` | 64 | Reduced to optimise for FlashAttention |
|
190 |
+
| Vocabulary | 65024 | |
|
191 |
+
| Sequence length | 2048 | |
|
192 |
+
|
193 |
+
### Compute Infrastructure
|
194 |
+
|
195 |
+
#### Hardware
|
196 |
+
|
197 |
+
Falcon-180B was trained on AWS SageMaker, on up to 4,096 A100 40GB GPUs in P4d instances.
|
198 |
+
|
199 |
+
#### Software
|
200 |
+
|
201 |
+
Falcon-180B was trained a custom distributed training codebase, Gigatron. It uses a 3D parallelism approach combined with ZeRO and high-performance Triton kernels (FlashAttention, etc.)
|
202 |
+
|
203 |
+
|
204 |
+
## Citation
|
205 |
+
|
206 |
+
*Paper coming soon* 😊 (actually this time). In the meanwhile, you can use the following information to cite:
|
207 |
+
```
|
208 |
+
@article{falcon,
|
209 |
+
title={The Falcon Series of Language Models: Towards Open Frontier Models},
|
210 |
+
author={Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Alhammadi, Maitha and Daniele, Mazzotta and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme},
|
211 |
+
year={2023}
|
212 |
+
}
|
213 |
+
```
|
214 |
+
|
215 |
+
|
216 |
+
|
217 |
+
|
218 |
+
To learn more about the pretraining dataset, see the 📓 [RefinedWeb paper](https://arxiv.org/abs/2306.01116).
|
219 |
+
|
220 |
+
```
|
221 |
+
@article{refinedweb,
|
222 |
+
title={The {R}efined{W}eb dataset for {F}alcon {LLM}: outperforming curated corpora with web data, and web data only},
|
223 |
+
author={Guilherme Penedo and Quentin Malartic and Daniel Hesslow and Ruxandra Cojocaru and Alessandro Cappelli and Hamza Alobeidli and Baptiste Pannier and Ebtesam Almazrouei and Julien Launay},
|
224 |
+
journal={arXiv preprint arXiv:2306.01116},
|
225 |
+
eprint={2306.01116},
|
226 |
+
eprinttype = {arXiv},
|
227 |
+
url={https://arxiv.org/abs/2306.01116},
|
228 |
+
year={2023}
|
229 |
+
}
|
230 |
+
```
|
231 |
+
|
232 |
+
|
233 |
+
## Contact
|
234 |
+
falconllm@tii.ae
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alibi": false,
|
3 |
+
"architectures": [
|
4 |
+
"FalconForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bias": false,
|
8 |
+
"bos_token_id": 11,
|
9 |
+
"eos_token_id": 11,
|
10 |
+
"hidden_dropout": 0.0,
|
11 |
+
"hidden_size": 14848,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"layer_norm_epsilon": 1e-05,
|
14 |
+
"model_type": "falcon",
|
15 |
+
"multi_query": true,
|
16 |
+
"new_decoder_architecture": true,
|
17 |
+
"num_attention_heads": 232,
|
18 |
+
"num_hidden_layers": 80,
|
19 |
+
"num_kv_heads": 8,
|
20 |
+
"parallel_attn": true,
|
21 |
+
"torch_dtype": "bfloat16",
|
22 |
+
"transformers_version": "4.32.0",
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 65024
|
25 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 11,
|
4 |
+
"eos_token_id": 11,
|
5 |
+
"transformers_version": "4.32.0"
|
6 |
+
}
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,651 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 359045130240
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00081-of-00081.safetensors",
|
7 |
+
"transformer.h.0.ln_attn.bias": "model-00002-of-00081.safetensors",
|
8 |
+
"transformer.h.0.ln_attn.weight": "model-00002-of-00081.safetensors",
|
9 |
+
"transformer.h.0.ln_mlp.bias": "model-00002-of-00081.safetensors",
|
10 |
+
"transformer.h.0.ln_mlp.weight": "model-00002-of-00081.safetensors",
|
11 |
+
"transformer.h.0.mlp.dense_4h_to_h.weight": "model-00002-of-00081.safetensors",
|
12 |
+
"transformer.h.0.mlp.dense_h_to_4h.weight": "model-00001-of-00081.safetensors",
|
13 |
+
"transformer.h.0.self_attention.dense.weight": "model-00001-of-00081.safetensors",
|
14 |
+
"transformer.h.0.self_attention.query_key_value.weight": "model-00001-of-00081.safetensors",
|
15 |
+
"transformer.h.1.ln_attn.bias": "model-00003-of-00081.safetensors",
|
16 |
+
"transformer.h.1.ln_attn.weight": "model-00003-of-00081.safetensors",
|
17 |
+
"transformer.h.1.ln_mlp.bias": "model-00003-of-00081.safetensors",
|
18 |
+
"transformer.h.1.ln_mlp.weight": "model-00003-of-00081.safetensors",
|
19 |
+
"transformer.h.1.mlp.dense_4h_to_h.weight": "model-00003-of-00081.safetensors",
|
20 |
+
"transformer.h.1.mlp.dense_h_to_4h.weight": "model-00002-of-00081.safetensors",
|
21 |
+
"transformer.h.1.self_attention.dense.weight": "model-00002-of-00081.safetensors",
|
22 |
+
"transformer.h.1.self_attention.query_key_value.weight": "model-00002-of-00081.safetensors",
|
23 |
+
"transformer.h.10.ln_attn.bias": "model-00012-of-00081.safetensors",
|
24 |
+
"transformer.h.10.ln_attn.weight": "model-00012-of-00081.safetensors",
|
25 |
+
"transformer.h.10.ln_mlp.bias": "model-00012-of-00081.safetensors",
|
26 |
+
"transformer.h.10.ln_mlp.weight": "model-00012-of-00081.safetensors",
|
27 |
+
"transformer.h.10.mlp.dense_4h_to_h.weight": "model-00012-of-00081.safetensors",
|
28 |
+
"transformer.h.10.mlp.dense_h_to_4h.weight": "model-00011-of-00081.safetensors",
|
29 |
+
"transformer.h.10.self_attention.dense.weight": "model-00011-of-00081.safetensors",
|
30 |
+
"transformer.h.10.self_attention.query_key_value.weight": "model-00011-of-00081.safetensors",
|
31 |
+
"transformer.h.11.ln_attn.bias": "model-00013-of-00081.safetensors",
|
32 |
+
"transformer.h.11.ln_attn.weight": "model-00013-of-00081.safetensors",
|
33 |
+
"transformer.h.11.ln_mlp.bias": "model-00013-of-00081.safetensors",
|
34 |
+
"transformer.h.11.ln_mlp.weight": "model-00013-of-00081.safetensors",
|
35 |
+
"transformer.h.11.mlp.dense_4h_to_h.weight": "model-00013-of-00081.safetensors",
|
36 |
+
"transformer.h.11.mlp.dense_h_to_4h.weight": "model-00012-of-00081.safetensors",
|
37 |
+
"transformer.h.11.self_attention.dense.weight": "model-00012-of-00081.safetensors",
|
38 |
+
"transformer.h.11.self_attention.query_key_value.weight": "model-00012-of-00081.safetensors",
|
39 |
+
"transformer.h.12.ln_attn.bias": "model-00014-of-00081.safetensors",
|
40 |
+
"transformer.h.12.ln_attn.weight": "model-00014-of-00081.safetensors",
|
41 |
+
"transformer.h.12.ln_mlp.bias": "model-00014-of-00081.safetensors",
|
42 |
+
"transformer.h.12.ln_mlp.weight": "model-00014-of-00081.safetensors",
|
43 |
+
"transformer.h.12.mlp.dense_4h_to_h.weight": "model-00014-of-00081.safetensors",
|
44 |
+
"transformer.h.12.mlp.dense_h_to_4h.weight": "model-00013-of-00081.safetensors",
|
45 |
+
"transformer.h.12.self_attention.dense.weight": "model-00013-of-00081.safetensors",
|
46 |
+
"transformer.h.12.self_attention.query_key_value.weight": "model-00013-of-00081.safetensors",
|
47 |
+
"transformer.h.13.ln_attn.bias": "model-00015-of-00081.safetensors",
|
48 |
+
"transformer.h.13.ln_attn.weight": "model-00015-of-00081.safetensors",
|
49 |
+
"transformer.h.13.ln_mlp.bias": "model-00015-of-00081.safetensors",
|
50 |
+
"transformer.h.13.ln_mlp.weight": "model-00015-of-00081.safetensors",
|
51 |
+
"transformer.h.13.mlp.dense_4h_to_h.weight": "model-00015-of-00081.safetensors",
|
52 |
+
"transformer.h.13.mlp.dense_h_to_4h.weight": "model-00014-of-00081.safetensors",
|
53 |
+
"transformer.h.13.self_attention.dense.weight": "model-00014-of-00081.safetensors",
|
54 |
+
"transformer.h.13.self_attention.query_key_value.weight": "model-00014-of-00081.safetensors",
|
55 |
+
"transformer.h.14.ln_attn.bias": "model-00016-of-00081.safetensors",
|
56 |
+
"transformer.h.14.ln_attn.weight": "model-00016-of-00081.safetensors",
|
57 |
+
"transformer.h.14.ln_mlp.bias": "model-00016-of-00081.safetensors",
|
58 |
+
"transformer.h.14.ln_mlp.weight": "model-00016-of-00081.safetensors",
|
59 |
+
"transformer.h.14.mlp.dense_4h_to_h.weight": "model-00016-of-00081.safetensors",
|
60 |
+
"transformer.h.14.mlp.dense_h_to_4h.weight": "model-00015-of-00081.safetensors",
|
61 |
+
"transformer.h.14.self_attention.dense.weight": "model-00015-of-00081.safetensors",
|
62 |
+
"transformer.h.14.self_attention.query_key_value.weight": "model-00015-of-00081.safetensors",
|
63 |
+
"transformer.h.15.ln_attn.bias": "model-00017-of-00081.safetensors",
|
64 |
+
"transformer.h.15.ln_attn.weight": "model-00017-of-00081.safetensors",
|
65 |
+
"transformer.h.15.ln_mlp.bias": "model-00017-of-00081.safetensors",
|
66 |
+
"transformer.h.15.ln_mlp.weight": "model-00017-of-00081.safetensors",
|
67 |
+
"transformer.h.15.mlp.dense_4h_to_h.weight": "model-00017-of-00081.safetensors",
|
68 |
+
"transformer.h.15.mlp.dense_h_to_4h.weight": "model-00016-of-00081.safetensors",
|
69 |
+
"transformer.h.15.self_attention.dense.weight": "model-00016-of-00081.safetensors",
|
70 |
+
"transformer.h.15.self_attention.query_key_value.weight": "model-00016-of-00081.safetensors",
|
71 |
+
"transformer.h.16.ln_attn.bias": "model-00018-of-00081.safetensors",
|
72 |
+
"transformer.h.16.ln_attn.weight": "model-00018-of-00081.safetensors",
|
73 |
+
"transformer.h.16.ln_mlp.bias": "model-00018-of-00081.safetensors",
|
74 |
+
"transformer.h.16.ln_mlp.weight": "model-00018-of-00081.safetensors",
|
75 |
+
"transformer.h.16.mlp.dense_4h_to_h.weight": "model-00018-of-00081.safetensors",
|
76 |
+
"transformer.h.16.mlp.dense_h_to_4h.weight": "model-00017-of-00081.safetensors",
|
77 |
+
"transformer.h.16.self_attention.dense.weight": "model-00017-of-00081.safetensors",
|
78 |
+
"transformer.h.16.self_attention.query_key_value.weight": "model-00017-of-00081.safetensors",
|
79 |
+
"transformer.h.17.ln_attn.bias": "model-00019-of-00081.safetensors",
|
80 |
+
"transformer.h.17.ln_attn.weight": "model-00019-of-00081.safetensors",
|
81 |
+
"transformer.h.17.ln_mlp.bias": "model-00019-of-00081.safetensors",
|
82 |
+
"transformer.h.17.ln_mlp.weight": "model-00019-of-00081.safetensors",
|
83 |
+
"transformer.h.17.mlp.dense_4h_to_h.weight": "model-00019-of-00081.safetensors",
|
84 |
+
"transformer.h.17.mlp.dense_h_to_4h.weight": "model-00018-of-00081.safetensors",
|
85 |
+
"transformer.h.17.self_attention.dense.weight": "model-00018-of-00081.safetensors",
|
86 |
+
"transformer.h.17.self_attention.query_key_value.weight": "model-00018-of-00081.safetensors",
|
87 |
+
"transformer.h.18.ln_attn.bias": "model-00020-of-00081.safetensors",
|
88 |
+
"transformer.h.18.ln_attn.weight": "model-00020-of-00081.safetensors",
|
89 |
+
"transformer.h.18.ln_mlp.bias": "model-00020-of-00081.safetensors",
|
90 |
+
"transformer.h.18.ln_mlp.weight": "model-00020-of-00081.safetensors",
|
91 |
+
"transformer.h.18.mlp.dense_4h_to_h.weight": "model-00020-of-00081.safetensors",
|
92 |
+
"transformer.h.18.mlp.dense_h_to_4h.weight": "model-00019-of-00081.safetensors",
|
93 |
+
"transformer.h.18.self_attention.dense.weight": "model-00019-of-00081.safetensors",
|
94 |
+
"transformer.h.18.self_attention.query_key_value.weight": "model-00019-of-00081.safetensors",
|
95 |
+
"transformer.h.19.ln_attn.bias": "model-00021-of-00081.safetensors",
|
96 |
+
"transformer.h.19.ln_attn.weight": "model-00021-of-00081.safetensors",
|
97 |
+
"transformer.h.19.ln_mlp.bias": "model-00021-of-00081.safetensors",
|
98 |
+
"transformer.h.19.ln_mlp.weight": "model-00021-of-00081.safetensors",
|
99 |
+
"transformer.h.19.mlp.dense_4h_to_h.weight": "model-00021-of-00081.safetensors",
|
100 |
+
"transformer.h.19.mlp.dense_h_to_4h.weight": "model-00020-of-00081.safetensors",
|
101 |
+
"transformer.h.19.self_attention.dense.weight": "model-00020-of-00081.safetensors",
|
102 |
+
"transformer.h.19.self_attention.query_key_value.weight": "model-00020-of-00081.safetensors",
|
103 |
+
"transformer.h.2.ln_attn.bias": "model-00004-of-00081.safetensors",
|
104 |
+
"transformer.h.2.ln_attn.weight": "model-00004-of-00081.safetensors",
|
105 |
+
"transformer.h.2.ln_mlp.bias": "model-00004-of-00081.safetensors",
|
106 |
+
"transformer.h.2.ln_mlp.weight": "model-00004-of-00081.safetensors",
|
107 |
+
"transformer.h.2.mlp.dense_4h_to_h.weight": "model-00004-of-00081.safetensors",
|
108 |
+
"transformer.h.2.mlp.dense_h_to_4h.weight": "model-00003-of-00081.safetensors",
|
109 |
+
"transformer.h.2.self_attention.dense.weight": "model-00003-of-00081.safetensors",
|
110 |
+
"transformer.h.2.self_attention.query_key_value.weight": "model-00003-of-00081.safetensors",
|
111 |
+
"transformer.h.20.ln_attn.bias": "model-00022-of-00081.safetensors",
|
112 |
+
"transformer.h.20.ln_attn.weight": "model-00022-of-00081.safetensors",
|
113 |
+
"transformer.h.20.ln_mlp.bias": "model-00022-of-00081.safetensors",
|
114 |
+
"transformer.h.20.ln_mlp.weight": "model-00022-of-00081.safetensors",
|
115 |
+
"transformer.h.20.mlp.dense_4h_to_h.weight": "model-00022-of-00081.safetensors",
|
116 |
+
"transformer.h.20.mlp.dense_h_to_4h.weight": "model-00021-of-00081.safetensors",
|
117 |
+
"transformer.h.20.self_attention.dense.weight": "model-00021-of-00081.safetensors",
|
118 |
+
"transformer.h.20.self_attention.query_key_value.weight": "model-00021-of-00081.safetensors",
|
119 |
+
"transformer.h.21.ln_attn.bias": "model-00023-of-00081.safetensors",
|
120 |
+
"transformer.h.21.ln_attn.weight": "model-00023-of-00081.safetensors",
|
121 |
+
"transformer.h.21.ln_mlp.bias": "model-00023-of-00081.safetensors",
|
122 |
+
"transformer.h.21.ln_mlp.weight": "model-00023-of-00081.safetensors",
|
123 |
+
"transformer.h.21.mlp.dense_4h_to_h.weight": "model-00023-of-00081.safetensors",
|
124 |
+
"transformer.h.21.mlp.dense_h_to_4h.weight": "model-00022-of-00081.safetensors",
|
125 |
+
"transformer.h.21.self_attention.dense.weight": "model-00022-of-00081.safetensors",
|
126 |
+
"transformer.h.21.self_attention.query_key_value.weight": "model-00022-of-00081.safetensors",
|
127 |
+
"transformer.h.22.ln_attn.bias": "model-00024-of-00081.safetensors",
|
128 |
+
"transformer.h.22.ln_attn.weight": "model-00024-of-00081.safetensors",
|
129 |
+
"transformer.h.22.ln_mlp.bias": "model-00024-of-00081.safetensors",
|
130 |
+
"transformer.h.22.ln_mlp.weight": "model-00024-of-00081.safetensors",
|
131 |
+
"transformer.h.22.mlp.dense_4h_to_h.weight": "model-00024-of-00081.safetensors",
|
132 |
+
"transformer.h.22.mlp.dense_h_to_4h.weight": "model-00023-of-00081.safetensors",
|
133 |
+
"transformer.h.22.self_attention.dense.weight": "model-00023-of-00081.safetensors",
|
134 |
+
"transformer.h.22.self_attention.query_key_value.weight": "model-00023-of-00081.safetensors",
|
135 |
+
"transformer.h.23.ln_attn.bias": "model-00025-of-00081.safetensors",
|
136 |
+
"transformer.h.23.ln_attn.weight": "model-00025-of-00081.safetensors",
|
137 |
+
"transformer.h.23.ln_mlp.bias": "model-00025-of-00081.safetensors",
|
138 |
+
"transformer.h.23.ln_mlp.weight": "model-00025-of-00081.safetensors",
|
139 |
+
"transformer.h.23.mlp.dense_4h_to_h.weight": "model-00025-of-00081.safetensors",
|
140 |
+
"transformer.h.23.mlp.dense_h_to_4h.weight": "model-00024-of-00081.safetensors",
|
141 |
+
"transformer.h.23.self_attention.dense.weight": "model-00024-of-00081.safetensors",
|
142 |
+
"transformer.h.23.self_attention.query_key_value.weight": "model-00024-of-00081.safetensors",
|
143 |
+
"transformer.h.24.ln_attn.bias": "model-00026-of-00081.safetensors",
|
144 |
+
"transformer.h.24.ln_attn.weight": "model-00026-of-00081.safetensors",
|
145 |
+
"transformer.h.24.ln_mlp.bias": "model-00026-of-00081.safetensors",
|
146 |
+
"transformer.h.24.ln_mlp.weight": "model-00026-of-00081.safetensors",
|
147 |
+
"transformer.h.24.mlp.dense_4h_to_h.weight": "model-00026-of-00081.safetensors",
|
148 |
+
"transformer.h.24.mlp.dense_h_to_4h.weight": "model-00025-of-00081.safetensors",
|
149 |
+
"transformer.h.24.self_attention.dense.weight": "model-00025-of-00081.safetensors",
|
150 |
+
"transformer.h.24.self_attention.query_key_value.weight": "model-00025-of-00081.safetensors",
|
151 |
+
"transformer.h.25.ln_attn.bias": "model-00027-of-00081.safetensors",
|
152 |
+
"transformer.h.25.ln_attn.weight": "model-00027-of-00081.safetensors",
|
153 |
+
"transformer.h.25.ln_mlp.bias": "model-00027-of-00081.safetensors",
|
154 |
+
"transformer.h.25.ln_mlp.weight": "model-00027-of-00081.safetensors",
|
155 |
+
"transformer.h.25.mlp.dense_4h_to_h.weight": "model-00027-of-00081.safetensors",
|
156 |
+
"transformer.h.25.mlp.dense_h_to_4h.weight": "model-00026-of-00081.safetensors",
|
157 |
+
"transformer.h.25.self_attention.dense.weight": "model-00026-of-00081.safetensors",
|
158 |
+
"transformer.h.25.self_attention.query_key_value.weight": "model-00026-of-00081.safetensors",
|
159 |
+
"transformer.h.26.ln_attn.bias": "model-00028-of-00081.safetensors",
|
160 |
+
"transformer.h.26.ln_attn.weight": "model-00028-of-00081.safetensors",
|
161 |
+
"transformer.h.26.ln_mlp.bias": "model-00028-of-00081.safetensors",
|
162 |
+
"transformer.h.26.ln_mlp.weight": "model-00028-of-00081.safetensors",
|
163 |
+
"transformer.h.26.mlp.dense_4h_to_h.weight": "model-00028-of-00081.safetensors",
|
164 |
+
"transformer.h.26.mlp.dense_h_to_4h.weight": "model-00027-of-00081.safetensors",
|
165 |
+
"transformer.h.26.self_attention.dense.weight": "model-00027-of-00081.safetensors",
|
166 |
+
"transformer.h.26.self_attention.query_key_value.weight": "model-00027-of-00081.safetensors",
|
167 |
+
"transformer.h.27.ln_attn.bias": "model-00029-of-00081.safetensors",
|
168 |
+
"transformer.h.27.ln_attn.weight": "model-00029-of-00081.safetensors",
|
169 |
+
"transformer.h.27.ln_mlp.bias": "model-00029-of-00081.safetensors",
|
170 |
+
"transformer.h.27.ln_mlp.weight": "model-00029-of-00081.safetensors",
|
171 |
+
"transformer.h.27.mlp.dense_4h_to_h.weight": "model-00029-of-00081.safetensors",
|
172 |
+
"transformer.h.27.mlp.dense_h_to_4h.weight": "model-00028-of-00081.safetensors",
|
173 |
+
"transformer.h.27.self_attention.dense.weight": "model-00028-of-00081.safetensors",
|
174 |
+
"transformer.h.27.self_attention.query_key_value.weight": "model-00028-of-00081.safetensors",
|
175 |
+
"transformer.h.28.ln_attn.bias": "model-00030-of-00081.safetensors",
|
176 |
+
"transformer.h.28.ln_attn.weight": "model-00030-of-00081.safetensors",
|
177 |
+
"transformer.h.28.ln_mlp.bias": "model-00030-of-00081.safetensors",
|
178 |
+
"transformer.h.28.ln_mlp.weight": "model-00030-of-00081.safetensors",
|
179 |
+
"transformer.h.28.mlp.dense_4h_to_h.weight": "model-00030-of-00081.safetensors",
|
180 |
+
"transformer.h.28.mlp.dense_h_to_4h.weight": "model-00029-of-00081.safetensors",
|
181 |
+
"transformer.h.28.self_attention.dense.weight": "model-00029-of-00081.safetensors",
|
182 |
+
"transformer.h.28.self_attention.query_key_value.weight": "model-00029-of-00081.safetensors",
|
183 |
+
"transformer.h.29.ln_attn.bias": "model-00031-of-00081.safetensors",
|
184 |
+
"transformer.h.29.ln_attn.weight": "model-00031-of-00081.safetensors",
|
185 |
+
"transformer.h.29.ln_mlp.bias": "model-00031-of-00081.safetensors",
|
186 |
+
"transformer.h.29.ln_mlp.weight": "model-00031-of-00081.safetensors",
|
187 |
+
"transformer.h.29.mlp.dense_4h_to_h.weight": "model-00031-of-00081.safetensors",
|
188 |
+
"transformer.h.29.mlp.dense_h_to_4h.weight": "model-00030-of-00081.safetensors",
|
189 |
+
"transformer.h.29.self_attention.dense.weight": "model-00030-of-00081.safetensors",
|
190 |
+
"transformer.h.29.self_attention.query_key_value.weight": "model-00030-of-00081.safetensors",
|
191 |
+
"transformer.h.3.ln_attn.bias": "model-00005-of-00081.safetensors",
|
192 |
+
"transformer.h.3.ln_attn.weight": "model-00005-of-00081.safetensors",
|
193 |
+
"transformer.h.3.ln_mlp.bias": "model-00005-of-00081.safetensors",
|
194 |
+
"transformer.h.3.ln_mlp.weight": "model-00005-of-00081.safetensors",
|
195 |
+
"transformer.h.3.mlp.dense_4h_to_h.weight": "model-00005-of-00081.safetensors",
|
196 |
+
"transformer.h.3.mlp.dense_h_to_4h.weight": "model-00004-of-00081.safetensors",
|
197 |
+
"transformer.h.3.self_attention.dense.weight": "model-00004-of-00081.safetensors",
|
198 |
+
"transformer.h.3.self_attention.query_key_value.weight": "model-00004-of-00081.safetensors",
|
199 |
+
"transformer.h.30.ln_attn.bias": "model-00032-of-00081.safetensors",
|
200 |
+
"transformer.h.30.ln_attn.weight": "model-00032-of-00081.safetensors",
|
201 |
+
"transformer.h.30.ln_mlp.bias": "model-00032-of-00081.safetensors",
|
202 |
+
"transformer.h.30.ln_mlp.weight": "model-00032-of-00081.safetensors",
|
203 |
+
"transformer.h.30.mlp.dense_4h_to_h.weight": "model-00032-of-00081.safetensors",
|
204 |
+
"transformer.h.30.mlp.dense_h_to_4h.weight": "model-00031-of-00081.safetensors",
|
205 |
+
"transformer.h.30.self_attention.dense.weight": "model-00031-of-00081.safetensors",
|
206 |
+
"transformer.h.30.self_attention.query_key_value.weight": "model-00031-of-00081.safetensors",
|
207 |
+
"transformer.h.31.ln_attn.bias": "model-00033-of-00081.safetensors",
|
208 |
+
"transformer.h.31.ln_attn.weight": "model-00033-of-00081.safetensors",
|
209 |
+
"transformer.h.31.ln_mlp.bias": "model-00033-of-00081.safetensors",
|
210 |
+
"transformer.h.31.ln_mlp.weight": "model-00033-of-00081.safetensors",
|
211 |
+
"transformer.h.31.mlp.dense_4h_to_h.weight": "model-00033-of-00081.safetensors",
|
212 |
+
"transformer.h.31.mlp.dense_h_to_4h.weight": "model-00032-of-00081.safetensors",
|
213 |
+
"transformer.h.31.self_attention.dense.weight": "model-00032-of-00081.safetensors",
|
214 |
+
"transformer.h.31.self_attention.query_key_value.weight": "model-00032-of-00081.safetensors",
|
215 |
+
"transformer.h.32.ln_attn.bias": "model-00034-of-00081.safetensors",
|
216 |
+
"transformer.h.32.ln_attn.weight": "model-00034-of-00081.safetensors",
|
217 |
+
"transformer.h.32.ln_mlp.bias": "model-00034-of-00081.safetensors",
|
218 |
+
"transformer.h.32.ln_mlp.weight": "model-00034-of-00081.safetensors",
|
219 |
+
"transformer.h.32.mlp.dense_4h_to_h.weight": "model-00034-of-00081.safetensors",
|
220 |
+
"transformer.h.32.mlp.dense_h_to_4h.weight": "model-00033-of-00081.safetensors",
|
221 |
+
"transformer.h.32.self_attention.dense.weight": "model-00033-of-00081.safetensors",
|
222 |
+
"transformer.h.32.self_attention.query_key_value.weight": "model-00033-of-00081.safetensors",
|
223 |
+
"transformer.h.33.ln_attn.bias": "model-00035-of-00081.safetensors",
|
224 |
+
"transformer.h.33.ln_attn.weight": "model-00035-of-00081.safetensors",
|
225 |
+
"transformer.h.33.ln_mlp.bias": "model-00035-of-00081.safetensors",
|
226 |
+
"transformer.h.33.ln_mlp.weight": "model-00035-of-00081.safetensors",
|
227 |
+
"transformer.h.33.mlp.dense_4h_to_h.weight": "model-00035-of-00081.safetensors",
|
228 |
+
"transformer.h.33.mlp.dense_h_to_4h.weight": "model-00034-of-00081.safetensors",
|
229 |
+
"transformer.h.33.self_attention.dense.weight": "model-00034-of-00081.safetensors",
|
230 |
+
"transformer.h.33.self_attention.query_key_value.weight": "model-00034-of-00081.safetensors",
|
231 |
+
"transformer.h.34.ln_attn.bias": "model-00036-of-00081.safetensors",
|
232 |
+
"transformer.h.34.ln_attn.weight": "model-00036-of-00081.safetensors",
|
233 |
+
"transformer.h.34.ln_mlp.bias": "model-00036-of-00081.safetensors",
|
234 |
+
"transformer.h.34.ln_mlp.weight": "model-00036-of-00081.safetensors",
|
235 |
+
"transformer.h.34.mlp.dense_4h_to_h.weight": "model-00036-of-00081.safetensors",
|
236 |
+
"transformer.h.34.mlp.dense_h_to_4h.weight": "model-00035-of-00081.safetensors",
|
237 |
+
"transformer.h.34.self_attention.dense.weight": "model-00035-of-00081.safetensors",
|
238 |
+
"transformer.h.34.self_attention.query_key_value.weight": "model-00035-of-00081.safetensors",
|
239 |
+
"transformer.h.35.ln_attn.bias": "model-00037-of-00081.safetensors",
|
240 |
+
"transformer.h.35.ln_attn.weight": "model-00037-of-00081.safetensors",
|
241 |
+
"transformer.h.35.ln_mlp.bias": "model-00037-of-00081.safetensors",
|
242 |
+
"transformer.h.35.ln_mlp.weight": "model-00037-of-00081.safetensors",
|
243 |
+
"transformer.h.35.mlp.dense_4h_to_h.weight": "model-00037-of-00081.safetensors",
|
244 |
+
"transformer.h.35.mlp.dense_h_to_4h.weight": "model-00036-of-00081.safetensors",
|
245 |
+
"transformer.h.35.self_attention.dense.weight": "model-00036-of-00081.safetensors",
|
246 |
+
"transformer.h.35.self_attention.query_key_value.weight": "model-00036-of-00081.safetensors",
|
247 |
+
"transformer.h.36.ln_attn.bias": "model-00038-of-00081.safetensors",
|
248 |
+
"transformer.h.36.ln_attn.weight": "model-00038-of-00081.safetensors",
|
249 |
+
"transformer.h.36.ln_mlp.bias": "model-00038-of-00081.safetensors",
|
250 |
+
"transformer.h.36.ln_mlp.weight": "model-00038-of-00081.safetensors",
|
251 |
+
"transformer.h.36.mlp.dense_4h_to_h.weight": "model-00038-of-00081.safetensors",
|
252 |
+
"transformer.h.36.mlp.dense_h_to_4h.weight": "model-00037-of-00081.safetensors",
|
253 |
+
"transformer.h.36.self_attention.dense.weight": "model-00037-of-00081.safetensors",
|
254 |
+
"transformer.h.36.self_attention.query_key_value.weight": "model-00037-of-00081.safetensors",
|
255 |
+
"transformer.h.37.ln_attn.bias": "model-00039-of-00081.safetensors",
|
256 |
+
"transformer.h.37.ln_attn.weight": "model-00039-of-00081.safetensors",
|
257 |
+
"transformer.h.37.ln_mlp.bias": "model-00039-of-00081.safetensors",
|
258 |
+
"transformer.h.37.ln_mlp.weight": "model-00039-of-00081.safetensors",
|
259 |
+
"transformer.h.37.mlp.dense_4h_to_h.weight": "model-00039-of-00081.safetensors",
|
260 |
+
"transformer.h.37.mlp.dense_h_to_4h.weight": "model-00038-of-00081.safetensors",
|
261 |
+
"transformer.h.37.self_attention.dense.weight": "model-00038-of-00081.safetensors",
|
262 |
+
"transformer.h.37.self_attention.query_key_value.weight": "model-00038-of-00081.safetensors",
|
263 |
+
"transformer.h.38.ln_attn.bias": "model-00040-of-00081.safetensors",
|
264 |
+
"transformer.h.38.ln_attn.weight": "model-00040-of-00081.safetensors",
|
265 |
+
"transformer.h.38.ln_mlp.bias": "model-00040-of-00081.safetensors",
|
266 |
+
"transformer.h.38.ln_mlp.weight": "model-00040-of-00081.safetensors",
|
267 |
+
"transformer.h.38.mlp.dense_4h_to_h.weight": "model-00040-of-00081.safetensors",
|
268 |
+
"transformer.h.38.mlp.dense_h_to_4h.weight": "model-00039-of-00081.safetensors",
|
269 |
+
"transformer.h.38.self_attention.dense.weight": "model-00039-of-00081.safetensors",
|
270 |
+
"transformer.h.38.self_attention.query_key_value.weight": "model-00039-of-00081.safetensors",
|
271 |
+
"transformer.h.39.ln_attn.bias": "model-00041-of-00081.safetensors",
|
272 |
+
"transformer.h.39.ln_attn.weight": "model-00041-of-00081.safetensors",
|
273 |
+
"transformer.h.39.ln_mlp.bias": "model-00041-of-00081.safetensors",
|
274 |
+
"transformer.h.39.ln_mlp.weight": "model-00041-of-00081.safetensors",
|
275 |
+
"transformer.h.39.mlp.dense_4h_to_h.weight": "model-00041-of-00081.safetensors",
|
276 |
+
"transformer.h.39.mlp.dense_h_to_4h.weight": "model-00040-of-00081.safetensors",
|
277 |
+
"transformer.h.39.self_attention.dense.weight": "model-00040-of-00081.safetensors",
|
278 |
+
"transformer.h.39.self_attention.query_key_value.weight": "model-00040-of-00081.safetensors",
|
279 |
+
"transformer.h.4.ln_attn.bias": "model-00006-of-00081.safetensors",
|
280 |
+
"transformer.h.4.ln_attn.weight": "model-00006-of-00081.safetensors",
|
281 |
+
"transformer.h.4.ln_mlp.bias": "model-00006-of-00081.safetensors",
|
282 |
+
"transformer.h.4.ln_mlp.weight": "model-00006-of-00081.safetensors",
|
283 |
+
"transformer.h.4.mlp.dense_4h_to_h.weight": "model-00006-of-00081.safetensors",
|
284 |
+
"transformer.h.4.mlp.dense_h_to_4h.weight": "model-00005-of-00081.safetensors",
|
285 |
+
"transformer.h.4.self_attention.dense.weight": "model-00005-of-00081.safetensors",
|
286 |
+
"transformer.h.4.self_attention.query_key_value.weight": "model-00005-of-00081.safetensors",
|
287 |
+
"transformer.h.40.ln_attn.bias": "model-00042-of-00081.safetensors",
|
288 |
+
"transformer.h.40.ln_attn.weight": "model-00042-of-00081.safetensors",
|
289 |
+
"transformer.h.40.ln_mlp.bias": "model-00042-of-00081.safetensors",
|
290 |
+
"transformer.h.40.ln_mlp.weight": "model-00042-of-00081.safetensors",
|
291 |
+
"transformer.h.40.mlp.dense_4h_to_h.weight": "model-00042-of-00081.safetensors",
|
292 |
+
"transformer.h.40.mlp.dense_h_to_4h.weight": "model-00041-of-00081.safetensors",
|
293 |
+
"transformer.h.40.self_attention.dense.weight": "model-00041-of-00081.safetensors",
|
294 |
+
"transformer.h.40.self_attention.query_key_value.weight": "model-00041-of-00081.safetensors",
|
295 |
+
"transformer.h.41.ln_attn.bias": "model-00043-of-00081.safetensors",
|
296 |
+
"transformer.h.41.ln_attn.weight": "model-00043-of-00081.safetensors",
|
297 |
+
"transformer.h.41.ln_mlp.bias": "model-00043-of-00081.safetensors",
|
298 |
+
"transformer.h.41.ln_mlp.weight": "model-00043-of-00081.safetensors",
|
299 |
+
"transformer.h.41.mlp.dense_4h_to_h.weight": "model-00043-of-00081.safetensors",
|
300 |
+
"transformer.h.41.mlp.dense_h_to_4h.weight": "model-00042-of-00081.safetensors",
|
301 |
+
"transformer.h.41.self_attention.dense.weight": "model-00042-of-00081.safetensors",
|
302 |
+
"transformer.h.41.self_attention.query_key_value.weight": "model-00042-of-00081.safetensors",
|
303 |
+
"transformer.h.42.ln_attn.bias": "model-00044-of-00081.safetensors",
|
304 |
+
"transformer.h.42.ln_attn.weight": "model-00044-of-00081.safetensors",
|
305 |
+
"transformer.h.42.ln_mlp.bias": "model-00044-of-00081.safetensors",
|
306 |
+
"transformer.h.42.ln_mlp.weight": "model-00044-of-00081.safetensors",
|
307 |
+
"transformer.h.42.mlp.dense_4h_to_h.weight": "model-00044-of-00081.safetensors",
|
308 |
+
"transformer.h.42.mlp.dense_h_to_4h.weight": "model-00043-of-00081.safetensors",
|
309 |
+
"transformer.h.42.self_attention.dense.weight": "model-00043-of-00081.safetensors",
|
310 |
+
"transformer.h.42.self_attention.query_key_value.weight": "model-00043-of-00081.safetensors",
|
311 |
+
"transformer.h.43.ln_attn.bias": "model-00045-of-00081.safetensors",
|
312 |
+
"transformer.h.43.ln_attn.weight": "model-00045-of-00081.safetensors",
|
313 |
+
"transformer.h.43.ln_mlp.bias": "model-00045-of-00081.safetensors",
|
314 |
+
"transformer.h.43.ln_mlp.weight": "model-00045-of-00081.safetensors",
|
315 |
+
"transformer.h.43.mlp.dense_4h_to_h.weight": "model-00045-of-00081.safetensors",
|
316 |
+
"transformer.h.43.mlp.dense_h_to_4h.weight": "model-00044-of-00081.safetensors",
|
317 |
+
"transformer.h.43.self_attention.dense.weight": "model-00044-of-00081.safetensors",
|
318 |
+
"transformer.h.43.self_attention.query_key_value.weight": "model-00044-of-00081.safetensors",
|
319 |
+
"transformer.h.44.ln_attn.bias": "model-00046-of-00081.safetensors",
|
320 |
+
"transformer.h.44.ln_attn.weight": "model-00046-of-00081.safetensors",
|
321 |
+
"transformer.h.44.ln_mlp.bias": "model-00046-of-00081.safetensors",
|
322 |
+
"transformer.h.44.ln_mlp.weight": "model-00046-of-00081.safetensors",
|
323 |
+
"transformer.h.44.mlp.dense_4h_to_h.weight": "model-00046-of-00081.safetensors",
|
324 |
+
"transformer.h.44.mlp.dense_h_to_4h.weight": "model-00045-of-00081.safetensors",
|
325 |
+
"transformer.h.44.self_attention.dense.weight": "model-00045-of-00081.safetensors",
|
326 |
+
"transformer.h.44.self_attention.query_key_value.weight": "model-00045-of-00081.safetensors",
|
327 |
+
"transformer.h.45.ln_attn.bias": "model-00047-of-00081.safetensors",
|
328 |
+
"transformer.h.45.ln_attn.weight": "model-00047-of-00081.safetensors",
|
329 |
+
"transformer.h.45.ln_mlp.bias": "model-00047-of-00081.safetensors",
|
330 |
+
"transformer.h.45.ln_mlp.weight": "model-00047-of-00081.safetensors",
|
331 |
+
"transformer.h.45.mlp.dense_4h_to_h.weight": "model-00047-of-00081.safetensors",
|
332 |
+
"transformer.h.45.mlp.dense_h_to_4h.weight": "model-00046-of-00081.safetensors",
|
333 |
+
"transformer.h.45.self_attention.dense.weight": "model-00046-of-00081.safetensors",
|
334 |
+
"transformer.h.45.self_attention.query_key_value.weight": "model-00046-of-00081.safetensors",
|
335 |
+
"transformer.h.46.ln_attn.bias": "model-00048-of-00081.safetensors",
|
336 |
+
"transformer.h.46.ln_attn.weight": "model-00048-of-00081.safetensors",
|
337 |
+
"transformer.h.46.ln_mlp.bias": "model-00048-of-00081.safetensors",
|
338 |
+
"transformer.h.46.ln_mlp.weight": "model-00048-of-00081.safetensors",
|
339 |
+
"transformer.h.46.mlp.dense_4h_to_h.weight": "model-00048-of-00081.safetensors",
|
340 |
+
"transformer.h.46.mlp.dense_h_to_4h.weight": "model-00047-of-00081.safetensors",
|
341 |
+
"transformer.h.46.self_attention.dense.weight": "model-00047-of-00081.safetensors",
|
342 |
+
"transformer.h.46.self_attention.query_key_value.weight": "model-00047-of-00081.safetensors",
|
343 |
+
"transformer.h.47.ln_attn.bias": "model-00049-of-00081.safetensors",
|
344 |
+
"transformer.h.47.ln_attn.weight": "model-00049-of-00081.safetensors",
|
345 |
+
"transformer.h.47.ln_mlp.bias": "model-00049-of-00081.safetensors",
|
346 |
+
"transformer.h.47.ln_mlp.weight": "model-00049-of-00081.safetensors",
|
347 |
+
"transformer.h.47.mlp.dense_4h_to_h.weight": "model-00049-of-00081.safetensors",
|
348 |
+
"transformer.h.47.mlp.dense_h_to_4h.weight": "model-00048-of-00081.safetensors",
|
349 |
+
"transformer.h.47.self_attention.dense.weight": "model-00048-of-00081.safetensors",
|
350 |
+
"transformer.h.47.self_attention.query_key_value.weight": "model-00048-of-00081.safetensors",
|
351 |
+
"transformer.h.48.ln_attn.bias": "model-00050-of-00081.safetensors",
|
352 |
+
"transformer.h.48.ln_attn.weight": "model-00050-of-00081.safetensors",
|
353 |
+
"transformer.h.48.ln_mlp.bias": "model-00050-of-00081.safetensors",
|
354 |
+
"transformer.h.48.ln_mlp.weight": "model-00050-of-00081.safetensors",
|
355 |
+
"transformer.h.48.mlp.dense_4h_to_h.weight": "model-00050-of-00081.safetensors",
|
356 |
+
"transformer.h.48.mlp.dense_h_to_4h.weight": "model-00049-of-00081.safetensors",
|
357 |
+
"transformer.h.48.self_attention.dense.weight": "model-00049-of-00081.safetensors",
|
358 |
+
"transformer.h.48.self_attention.query_key_value.weight": "model-00049-of-00081.safetensors",
|
359 |
+
"transformer.h.49.ln_attn.bias": "model-00051-of-00081.safetensors",
|
360 |
+
"transformer.h.49.ln_attn.weight": "model-00051-of-00081.safetensors",
|
361 |
+
"transformer.h.49.ln_mlp.bias": "model-00051-of-00081.safetensors",
|
362 |
+
"transformer.h.49.ln_mlp.weight": "model-00051-of-00081.safetensors",
|
363 |
+
"transformer.h.49.mlp.dense_4h_to_h.weight": "model-00051-of-00081.safetensors",
|
364 |
+
"transformer.h.49.mlp.dense_h_to_4h.weight": "model-00050-of-00081.safetensors",
|
365 |
+
"transformer.h.49.self_attention.dense.weight": "model-00050-of-00081.safetensors",
|
366 |
+
"transformer.h.49.self_attention.query_key_value.weight": "model-00050-of-00081.safetensors",
|
367 |
+
"transformer.h.5.ln_attn.bias": "model-00007-of-00081.safetensors",
|
368 |
+
"transformer.h.5.ln_attn.weight": "model-00007-of-00081.safetensors",
|
369 |
+
"transformer.h.5.ln_mlp.bias": "model-00007-of-00081.safetensors",
|
370 |
+
"transformer.h.5.ln_mlp.weight": "model-00007-of-00081.safetensors",
|
371 |
+
"transformer.h.5.mlp.dense_4h_to_h.weight": "model-00007-of-00081.safetensors",
|
372 |
+
"transformer.h.5.mlp.dense_h_to_4h.weight": "model-00006-of-00081.safetensors",
|
373 |
+
"transformer.h.5.self_attention.dense.weight": "model-00006-of-00081.safetensors",
|
374 |
+
"transformer.h.5.self_attention.query_key_value.weight": "model-00006-of-00081.safetensors",
|
375 |
+
"transformer.h.50.ln_attn.bias": "model-00052-of-00081.safetensors",
|
376 |
+
"transformer.h.50.ln_attn.weight": "model-00052-of-00081.safetensors",
|
377 |
+
"transformer.h.50.ln_mlp.bias": "model-00052-of-00081.safetensors",
|
378 |
+
"transformer.h.50.ln_mlp.weight": "model-00052-of-00081.safetensors",
|
379 |
+
"transformer.h.50.mlp.dense_4h_to_h.weight": "model-00052-of-00081.safetensors",
|
380 |
+
"transformer.h.50.mlp.dense_h_to_4h.weight": "model-00051-of-00081.safetensors",
|
381 |
+
"transformer.h.50.self_attention.dense.weight": "model-00051-of-00081.safetensors",
|
382 |
+
"transformer.h.50.self_attention.query_key_value.weight": "model-00051-of-00081.safetensors",
|
383 |
+
"transformer.h.51.ln_attn.bias": "model-00053-of-00081.safetensors",
|
384 |
+
"transformer.h.51.ln_attn.weight": "model-00053-of-00081.safetensors",
|
385 |
+
"transformer.h.51.ln_mlp.bias": "model-00053-of-00081.safetensors",
|
386 |
+
"transformer.h.51.ln_mlp.weight": "model-00053-of-00081.safetensors",
|
387 |
+
"transformer.h.51.mlp.dense_4h_to_h.weight": "model-00053-of-00081.safetensors",
|
388 |
+
"transformer.h.51.mlp.dense_h_to_4h.weight": "model-00052-of-00081.safetensors",
|
389 |
+
"transformer.h.51.self_attention.dense.weight": "model-00052-of-00081.safetensors",
|
390 |
+
"transformer.h.51.self_attention.query_key_value.weight": "model-00052-of-00081.safetensors",
|
391 |
+
"transformer.h.52.ln_attn.bias": "model-00054-of-00081.safetensors",
|
392 |
+
"transformer.h.52.ln_attn.weight": "model-00054-of-00081.safetensors",
|
393 |
+
"transformer.h.52.ln_mlp.bias": "model-00054-of-00081.safetensors",
|
394 |
+
"transformer.h.52.ln_mlp.weight": "model-00054-of-00081.safetensors",
|
395 |
+
"transformer.h.52.mlp.dense_4h_to_h.weight": "model-00054-of-00081.safetensors",
|
396 |
+
"transformer.h.52.mlp.dense_h_to_4h.weight": "model-00053-of-00081.safetensors",
|
397 |
+
"transformer.h.52.self_attention.dense.weight": "model-00053-of-00081.safetensors",
|
398 |
+
"transformer.h.52.self_attention.query_key_value.weight": "model-00053-of-00081.safetensors",
|
399 |
+
"transformer.h.53.ln_attn.bias": "model-00055-of-00081.safetensors",
|
400 |
+
"transformer.h.53.ln_attn.weight": "model-00055-of-00081.safetensors",
|
401 |
+
"transformer.h.53.ln_mlp.bias": "model-00055-of-00081.safetensors",
|
402 |
+
"transformer.h.53.ln_mlp.weight": "model-00055-of-00081.safetensors",
|
403 |
+
"transformer.h.53.mlp.dense_4h_to_h.weight": "model-00055-of-00081.safetensors",
|
404 |
+
"transformer.h.53.mlp.dense_h_to_4h.weight": "model-00054-of-00081.safetensors",
|
405 |
+
"transformer.h.53.self_attention.dense.weight": "model-00054-of-00081.safetensors",
|
406 |
+
"transformer.h.53.self_attention.query_key_value.weight": "model-00054-of-00081.safetensors",
|
407 |
+
"transformer.h.54.ln_attn.bias": "model-00056-of-00081.safetensors",
|
408 |
+
"transformer.h.54.ln_attn.weight": "model-00056-of-00081.safetensors",
|
409 |
+
"transformer.h.54.ln_mlp.bias": "model-00056-of-00081.safetensors",
|
410 |
+
"transformer.h.54.ln_mlp.weight": "model-00056-of-00081.safetensors",
|
411 |
+
"transformer.h.54.mlp.dense_4h_to_h.weight": "model-00056-of-00081.safetensors",
|
412 |
+
"transformer.h.54.mlp.dense_h_to_4h.weight": "model-00055-of-00081.safetensors",
|
413 |
+
"transformer.h.54.self_attention.dense.weight": "model-00055-of-00081.safetensors",
|
414 |
+
"transformer.h.54.self_attention.query_key_value.weight": "model-00055-of-00081.safetensors",
|
415 |
+
"transformer.h.55.ln_attn.bias": "model-00057-of-00081.safetensors",
|
416 |
+
"transformer.h.55.ln_attn.weight": "model-00057-of-00081.safetensors",
|
417 |
+
"transformer.h.55.ln_mlp.bias": "model-00057-of-00081.safetensors",
|
418 |
+
"transformer.h.55.ln_mlp.weight": "model-00057-of-00081.safetensors",
|
419 |
+
"transformer.h.55.mlp.dense_4h_to_h.weight": "model-00057-of-00081.safetensors",
|
420 |
+
"transformer.h.55.mlp.dense_h_to_4h.weight": "model-00056-of-00081.safetensors",
|
421 |
+
"transformer.h.55.self_attention.dense.weight": "model-00056-of-00081.safetensors",
|
422 |
+
"transformer.h.55.self_attention.query_key_value.weight": "model-00056-of-00081.safetensors",
|
423 |
+
"transformer.h.56.ln_attn.bias": "model-00058-of-00081.safetensors",
|
424 |
+
"transformer.h.56.ln_attn.weight": "model-00058-of-00081.safetensors",
|
425 |
+
"transformer.h.56.ln_mlp.bias": "model-00058-of-00081.safetensors",
|
426 |
+
"transformer.h.56.ln_mlp.weight": "model-00058-of-00081.safetensors",
|
427 |
+
"transformer.h.56.mlp.dense_4h_to_h.weight": "model-00058-of-00081.safetensors",
|
428 |
+
"transformer.h.56.mlp.dense_h_to_4h.weight": "model-00057-of-00081.safetensors",
|
429 |
+
"transformer.h.56.self_attention.dense.weight": "model-00057-of-00081.safetensors",
|
430 |
+
"transformer.h.56.self_attention.query_key_value.weight": "model-00057-of-00081.safetensors",
|
431 |
+
"transformer.h.57.ln_attn.bias": "model-00059-of-00081.safetensors",
|
432 |
+
"transformer.h.57.ln_attn.weight": "model-00059-of-00081.safetensors",
|
433 |
+
"transformer.h.57.ln_mlp.bias": "model-00059-of-00081.safetensors",
|
434 |
+
"transformer.h.57.ln_mlp.weight": "model-00059-of-00081.safetensors",
|
435 |
+
"transformer.h.57.mlp.dense_4h_to_h.weight": "model-00059-of-00081.safetensors",
|
436 |
+
"transformer.h.57.mlp.dense_h_to_4h.weight": "model-00058-of-00081.safetensors",
|
437 |
+
"transformer.h.57.self_attention.dense.weight": "model-00058-of-00081.safetensors",
|
438 |
+
"transformer.h.57.self_attention.query_key_value.weight": "model-00058-of-00081.safetensors",
|
439 |
+
"transformer.h.58.ln_attn.bias": "model-00060-of-00081.safetensors",
|
440 |
+
"transformer.h.58.ln_attn.weight": "model-00060-of-00081.safetensors",
|
441 |
+
"transformer.h.58.ln_mlp.bias": "model-00060-of-00081.safetensors",
|
442 |
+
"transformer.h.58.ln_mlp.weight": "model-00060-of-00081.safetensors",
|
443 |
+
"transformer.h.58.mlp.dense_4h_to_h.weight": "model-00060-of-00081.safetensors",
|
444 |
+
"transformer.h.58.mlp.dense_h_to_4h.weight": "model-00059-of-00081.safetensors",
|
445 |
+
"transformer.h.58.self_attention.dense.weight": "model-00059-of-00081.safetensors",
|
446 |
+
"transformer.h.58.self_attention.query_key_value.weight": "model-00059-of-00081.safetensors",
|
447 |
+
"transformer.h.59.ln_attn.bias": "model-00061-of-00081.safetensors",
|
448 |
+
"transformer.h.59.ln_attn.weight": "model-00061-of-00081.safetensors",
|
449 |
+
"transformer.h.59.ln_mlp.bias": "model-00061-of-00081.safetensors",
|
450 |
+
"transformer.h.59.ln_mlp.weight": "model-00061-of-00081.safetensors",
|
451 |
+
"transformer.h.59.mlp.dense_4h_to_h.weight": "model-00061-of-00081.safetensors",
|
452 |
+
"transformer.h.59.mlp.dense_h_to_4h.weight": "model-00060-of-00081.safetensors",
|
453 |
+
"transformer.h.59.self_attention.dense.weight": "model-00060-of-00081.safetensors",
|
454 |
+
"transformer.h.59.self_attention.query_key_value.weight": "model-00060-of-00081.safetensors",
|
455 |
+
"transformer.h.6.ln_attn.bias": "model-00008-of-00081.safetensors",
|
456 |
+
"transformer.h.6.ln_attn.weight": "model-00008-of-00081.safetensors",
|
457 |
+
"transformer.h.6.ln_mlp.bias": "model-00008-of-00081.safetensors",
|
458 |
+
"transformer.h.6.ln_mlp.weight": "model-00008-of-00081.safetensors",
|
459 |
+
"transformer.h.6.mlp.dense_4h_to_h.weight": "model-00008-of-00081.safetensors",
|
460 |
+
"transformer.h.6.mlp.dense_h_to_4h.weight": "model-00007-of-00081.safetensors",
|
461 |
+
"transformer.h.6.self_attention.dense.weight": "model-00007-of-00081.safetensors",
|
462 |
+
"transformer.h.6.self_attention.query_key_value.weight": "model-00007-of-00081.safetensors",
|
463 |
+
"transformer.h.60.ln_attn.bias": "model-00062-of-00081.safetensors",
|
464 |
+
"transformer.h.60.ln_attn.weight": "model-00062-of-00081.safetensors",
|
465 |
+
"transformer.h.60.ln_mlp.bias": "model-00062-of-00081.safetensors",
|
466 |
+
"transformer.h.60.ln_mlp.weight": "model-00062-of-00081.safetensors",
|
467 |
+
"transformer.h.60.mlp.dense_4h_to_h.weight": "model-00062-of-00081.safetensors",
|
468 |
+
"transformer.h.60.mlp.dense_h_to_4h.weight": "model-00061-of-00081.safetensors",
|
469 |
+
"transformer.h.60.self_attention.dense.weight": "model-00061-of-00081.safetensors",
|
470 |
+
"transformer.h.60.self_attention.query_key_value.weight": "model-00061-of-00081.safetensors",
|
471 |
+
"transformer.h.61.ln_attn.bias": "model-00063-of-00081.safetensors",
|
472 |
+
"transformer.h.61.ln_attn.weight": "model-00063-of-00081.safetensors",
|
473 |
+
"transformer.h.61.ln_mlp.bias": "model-00063-of-00081.safetensors",
|
474 |
+
"transformer.h.61.ln_mlp.weight": "model-00063-of-00081.safetensors",
|
475 |
+
"transformer.h.61.mlp.dense_4h_to_h.weight": "model-00063-of-00081.safetensors",
|
476 |
+
"transformer.h.61.mlp.dense_h_to_4h.weight": "model-00062-of-00081.safetensors",
|
477 |
+
"transformer.h.61.self_attention.dense.weight": "model-00062-of-00081.safetensors",
|
478 |
+
"transformer.h.61.self_attention.query_key_value.weight": "model-00062-of-00081.safetensors",
|
479 |
+
"transformer.h.62.ln_attn.bias": "model-00064-of-00081.safetensors",
|
480 |
+
"transformer.h.62.ln_attn.weight": "model-00064-of-00081.safetensors",
|
481 |
+
"transformer.h.62.ln_mlp.bias": "model-00064-of-00081.safetensors",
|
482 |
+
"transformer.h.62.ln_mlp.weight": "model-00064-of-00081.safetensors",
|
483 |
+
"transformer.h.62.mlp.dense_4h_to_h.weight": "model-00064-of-00081.safetensors",
|
484 |
+
"transformer.h.62.mlp.dense_h_to_4h.weight": "model-00063-of-00081.safetensors",
|
485 |
+
"transformer.h.62.self_attention.dense.weight": "model-00063-of-00081.safetensors",
|
486 |
+
"transformer.h.62.self_attention.query_key_value.weight": "model-00063-of-00081.safetensors",
|
487 |
+
"transformer.h.63.ln_attn.bias": "model-00065-of-00081.safetensors",
|
488 |
+
"transformer.h.63.ln_attn.weight": "model-00065-of-00081.safetensors",
|
489 |
+
"transformer.h.63.ln_mlp.bias": "model-00065-of-00081.safetensors",
|
490 |
+
"transformer.h.63.ln_mlp.weight": "model-00065-of-00081.safetensors",
|
491 |
+
"transformer.h.63.mlp.dense_4h_to_h.weight": "model-00065-of-00081.safetensors",
|
492 |
+
"transformer.h.63.mlp.dense_h_to_4h.weight": "model-00064-of-00081.safetensors",
|
493 |
+
"transformer.h.63.self_attention.dense.weight": "model-00064-of-00081.safetensors",
|
494 |
+
"transformer.h.63.self_attention.query_key_value.weight": "model-00064-of-00081.safetensors",
|
495 |
+
"transformer.h.64.ln_attn.bias": "model-00066-of-00081.safetensors",
|
496 |
+
"transformer.h.64.ln_attn.weight": "model-00066-of-00081.safetensors",
|
497 |
+
"transformer.h.64.ln_mlp.bias": "model-00066-of-00081.safetensors",
|
498 |
+
"transformer.h.64.ln_mlp.weight": "model-00066-of-00081.safetensors",
|
499 |
+
"transformer.h.64.mlp.dense_4h_to_h.weight": "model-00066-of-00081.safetensors",
|
500 |
+
"transformer.h.64.mlp.dense_h_to_4h.weight": "model-00065-of-00081.safetensors",
|
501 |
+
"transformer.h.64.self_attention.dense.weight": "model-00065-of-00081.safetensors",
|
502 |
+
"transformer.h.64.self_attention.query_key_value.weight": "model-00065-of-00081.safetensors",
|
503 |
+
"transformer.h.65.ln_attn.bias": "model-00067-of-00081.safetensors",
|
504 |
+
"transformer.h.65.ln_attn.weight": "model-00067-of-00081.safetensors",
|
505 |
+
"transformer.h.65.ln_mlp.bias": "model-00067-of-00081.safetensors",
|
506 |
+
"transformer.h.65.ln_mlp.weight": "model-00067-of-00081.safetensors",
|
507 |
+
"transformer.h.65.mlp.dense_4h_to_h.weight": "model-00067-of-00081.safetensors",
|
508 |
+
"transformer.h.65.mlp.dense_h_to_4h.weight": "model-00066-of-00081.safetensors",
|
509 |
+
"transformer.h.65.self_attention.dense.weight": "model-00066-of-00081.safetensors",
|
510 |
+
"transformer.h.65.self_attention.query_key_value.weight": "model-00066-of-00081.safetensors",
|
511 |
+
"transformer.h.66.ln_attn.bias": "model-00068-of-00081.safetensors",
|
512 |
+
"transformer.h.66.ln_attn.weight": "model-00068-of-00081.safetensors",
|
513 |
+
"transformer.h.66.ln_mlp.bias": "model-00068-of-00081.safetensors",
|
514 |
+
"transformer.h.66.ln_mlp.weight": "model-00068-of-00081.safetensors",
|
515 |
+
"transformer.h.66.mlp.dense_4h_to_h.weight": "model-00068-of-00081.safetensors",
|
516 |
+
"transformer.h.66.mlp.dense_h_to_4h.weight": "model-00067-of-00081.safetensors",
|
517 |
+
"transformer.h.66.self_attention.dense.weight": "model-00067-of-00081.safetensors",
|
518 |
+
"transformer.h.66.self_attention.query_key_value.weight": "model-00067-of-00081.safetensors",
|
519 |
+
"transformer.h.67.ln_attn.bias": "model-00069-of-00081.safetensors",
|
520 |
+
"transformer.h.67.ln_attn.weight": "model-00069-of-00081.safetensors",
|
521 |
+
"transformer.h.67.ln_mlp.bias": "model-00069-of-00081.safetensors",
|
522 |
+
"transformer.h.67.ln_mlp.weight": "model-00069-of-00081.safetensors",
|
523 |
+
"transformer.h.67.mlp.dense_4h_to_h.weight": "model-00069-of-00081.safetensors",
|
524 |
+
"transformer.h.67.mlp.dense_h_to_4h.weight": "model-00068-of-00081.safetensors",
|
525 |
+
"transformer.h.67.self_attention.dense.weight": "model-00068-of-00081.safetensors",
|
526 |
+
"transformer.h.67.self_attention.query_key_value.weight": "model-00068-of-00081.safetensors",
|
527 |
+
"transformer.h.68.ln_attn.bias": "model-00070-of-00081.safetensors",
|
528 |
+
"transformer.h.68.ln_attn.weight": "model-00070-of-00081.safetensors",
|
529 |
+
"transformer.h.68.ln_mlp.bias": "model-00070-of-00081.safetensors",
|
530 |
+
"transformer.h.68.ln_mlp.weight": "model-00070-of-00081.safetensors",
|
531 |
+
"transformer.h.68.mlp.dense_4h_to_h.weight": "model-00070-of-00081.safetensors",
|
532 |
+
"transformer.h.68.mlp.dense_h_to_4h.weight": "model-00069-of-00081.safetensors",
|
533 |
+
"transformer.h.68.self_attention.dense.weight": "model-00069-of-00081.safetensors",
|
534 |
+
"transformer.h.68.self_attention.query_key_value.weight": "model-00069-of-00081.safetensors",
|
535 |
+
"transformer.h.69.ln_attn.bias": "model-00071-of-00081.safetensors",
|
536 |
+
"transformer.h.69.ln_attn.weight": "model-00071-of-00081.safetensors",
|
537 |
+
"transformer.h.69.ln_mlp.bias": "model-00071-of-00081.safetensors",
|
538 |
+
"transformer.h.69.ln_mlp.weight": "model-00071-of-00081.safetensors",
|
539 |
+
"transformer.h.69.mlp.dense_4h_to_h.weight": "model-00071-of-00081.safetensors",
|
540 |
+
"transformer.h.69.mlp.dense_h_to_4h.weight": "model-00070-of-00081.safetensors",
|
541 |
+
"transformer.h.69.self_attention.dense.weight": "model-00070-of-00081.safetensors",
|
542 |
+
"transformer.h.69.self_attention.query_key_value.weight": "model-00070-of-00081.safetensors",
|
543 |
+
"transformer.h.7.ln_attn.bias": "model-00009-of-00081.safetensors",
|
544 |
+
"transformer.h.7.ln_attn.weight": "model-00009-of-00081.safetensors",
|
545 |
+
"transformer.h.7.ln_mlp.bias": "model-00009-of-00081.safetensors",
|
546 |
+
"transformer.h.7.ln_mlp.weight": "model-00009-of-00081.safetensors",
|
547 |
+
"transformer.h.7.mlp.dense_4h_to_h.weight": "model-00009-of-00081.safetensors",
|
548 |
+
"transformer.h.7.mlp.dense_h_to_4h.weight": "model-00008-of-00081.safetensors",
|
549 |
+
"transformer.h.7.self_attention.dense.weight": "model-00008-of-00081.safetensors",
|
550 |
+
"transformer.h.7.self_attention.query_key_value.weight": "model-00008-of-00081.safetensors",
|
551 |
+
"transformer.h.70.ln_attn.bias": "model-00072-of-00081.safetensors",
|
552 |
+
"transformer.h.70.ln_attn.weight": "model-00072-of-00081.safetensors",
|
553 |
+
"transformer.h.70.ln_mlp.bias": "model-00072-of-00081.safetensors",
|
554 |
+
"transformer.h.70.ln_mlp.weight": "model-00072-of-00081.safetensors",
|
555 |
+
"transformer.h.70.mlp.dense_4h_to_h.weight": "model-00072-of-00081.safetensors",
|
556 |
+
"transformer.h.70.mlp.dense_h_to_4h.weight": "model-00071-of-00081.safetensors",
|
557 |
+
"transformer.h.70.self_attention.dense.weight": "model-00071-of-00081.safetensors",
|
558 |
+
"transformer.h.70.self_attention.query_key_value.weight": "model-00071-of-00081.safetensors",
|
559 |
+
"transformer.h.71.ln_attn.bias": "model-00073-of-00081.safetensors",
|
560 |
+
"transformer.h.71.ln_attn.weight": "model-00073-of-00081.safetensors",
|
561 |
+
"transformer.h.71.ln_mlp.bias": "model-00073-of-00081.safetensors",
|
562 |
+
"transformer.h.71.ln_mlp.weight": "model-00073-of-00081.safetensors",
|
563 |
+
"transformer.h.71.mlp.dense_4h_to_h.weight": "model-00073-of-00081.safetensors",
|
564 |
+
"transformer.h.71.mlp.dense_h_to_4h.weight": "model-00072-of-00081.safetensors",
|
565 |
+
"transformer.h.71.self_attention.dense.weight": "model-00072-of-00081.safetensors",
|
566 |
+
"transformer.h.71.self_attention.query_key_value.weight": "model-00072-of-00081.safetensors",
|
567 |
+
"transformer.h.72.ln_attn.bias": "model-00074-of-00081.safetensors",
|
568 |
+
"transformer.h.72.ln_attn.weight": "model-00074-of-00081.safetensors",
|
569 |
+
"transformer.h.72.ln_mlp.bias": "model-00074-of-00081.safetensors",
|
570 |
+
"transformer.h.72.ln_mlp.weight": "model-00074-of-00081.safetensors",
|
571 |
+
"transformer.h.72.mlp.dense_4h_to_h.weight": "model-00074-of-00081.safetensors",
|
572 |
+
"transformer.h.72.mlp.dense_h_to_4h.weight": "model-00073-of-00081.safetensors",
|
573 |
+
"transformer.h.72.self_attention.dense.weight": "model-00073-of-00081.safetensors",
|
574 |
+
"transformer.h.72.self_attention.query_key_value.weight": "model-00073-of-00081.safetensors",
|
575 |
+
"transformer.h.73.ln_attn.bias": "model-00075-of-00081.safetensors",
|
576 |
+
"transformer.h.73.ln_attn.weight": "model-00075-of-00081.safetensors",
|
577 |
+
"transformer.h.73.ln_mlp.bias": "model-00075-of-00081.safetensors",
|
578 |
+
"transformer.h.73.ln_mlp.weight": "model-00075-of-00081.safetensors",
|
579 |
+
"transformer.h.73.mlp.dense_4h_to_h.weight": "model-00075-of-00081.safetensors",
|
580 |
+
"transformer.h.73.mlp.dense_h_to_4h.weight": "model-00074-of-00081.safetensors",
|
581 |
+
"transformer.h.73.self_attention.dense.weight": "model-00074-of-00081.safetensors",
|
582 |
+
"transformer.h.73.self_attention.query_key_value.weight": "model-00074-of-00081.safetensors",
|
583 |
+
"transformer.h.74.ln_attn.bias": "model-00076-of-00081.safetensors",
|
584 |
+
"transformer.h.74.ln_attn.weight": "model-00076-of-00081.safetensors",
|
585 |
+
"transformer.h.74.ln_mlp.bias": "model-00076-of-00081.safetensors",
|
586 |
+
"transformer.h.74.ln_mlp.weight": "model-00076-of-00081.safetensors",
|
587 |
+
"transformer.h.74.mlp.dense_4h_to_h.weight": "model-00076-of-00081.safetensors",
|
588 |
+
"transformer.h.74.mlp.dense_h_to_4h.weight": "model-00075-of-00081.safetensors",
|
589 |
+
"transformer.h.74.self_attention.dense.weight": "model-00075-of-00081.safetensors",
|
590 |
+
"transformer.h.74.self_attention.query_key_value.weight": "model-00075-of-00081.safetensors",
|
591 |
+
"transformer.h.75.ln_attn.bias": "model-00077-of-00081.safetensors",
|
592 |
+
"transformer.h.75.ln_attn.weight": "model-00077-of-00081.safetensors",
|
593 |
+
"transformer.h.75.ln_mlp.bias": "model-00077-of-00081.safetensors",
|
594 |
+
"transformer.h.75.ln_mlp.weight": "model-00077-of-00081.safetensors",
|
595 |
+
"transformer.h.75.mlp.dense_4h_to_h.weight": "model-00077-of-00081.safetensors",
|
596 |
+
"transformer.h.75.mlp.dense_h_to_4h.weight": "model-00076-of-00081.safetensors",
|
597 |
+
"transformer.h.75.self_attention.dense.weight": "model-00076-of-00081.safetensors",
|
598 |
+
"transformer.h.75.self_attention.query_key_value.weight": "model-00076-of-00081.safetensors",
|
599 |
+
"transformer.h.76.ln_attn.bias": "model-00078-of-00081.safetensors",
|
600 |
+
"transformer.h.76.ln_attn.weight": "model-00078-of-00081.safetensors",
|
601 |
+
"transformer.h.76.ln_mlp.bias": "model-00078-of-00081.safetensors",
|
602 |
+
"transformer.h.76.ln_mlp.weight": "model-00078-of-00081.safetensors",
|
603 |
+
"transformer.h.76.mlp.dense_4h_to_h.weight": "model-00078-of-00081.safetensors",
|
604 |
+
"transformer.h.76.mlp.dense_h_to_4h.weight": "model-00077-of-00081.safetensors",
|
605 |
+
"transformer.h.76.self_attention.dense.weight": "model-00077-of-00081.safetensors",
|
606 |
+
"transformer.h.76.self_attention.query_key_value.weight": "model-00077-of-00081.safetensors",
|
607 |
+
"transformer.h.77.ln_attn.bias": "model-00079-of-00081.safetensors",
|
608 |
+
"transformer.h.77.ln_attn.weight": "model-00079-of-00081.safetensors",
|
609 |
+
"transformer.h.77.ln_mlp.bias": "model-00079-of-00081.safetensors",
|
610 |
+
"transformer.h.77.ln_mlp.weight": "model-00079-of-00081.safetensors",
|
611 |
+
"transformer.h.77.mlp.dense_4h_to_h.weight": "model-00079-of-00081.safetensors",
|
612 |
+
"transformer.h.77.mlp.dense_h_to_4h.weight": "model-00078-of-00081.safetensors",
|
613 |
+
"transformer.h.77.self_attention.dense.weight": "model-00078-of-00081.safetensors",
|
614 |
+
"transformer.h.77.self_attention.query_key_value.weight": "model-00078-of-00081.safetensors",
|
615 |
+
"transformer.h.78.ln_attn.bias": "model-00080-of-00081.safetensors",
|
616 |
+
"transformer.h.78.ln_attn.weight": "model-00080-of-00081.safetensors",
|
617 |
+
"transformer.h.78.ln_mlp.bias": "model-00080-of-00081.safetensors",
|
618 |
+
"transformer.h.78.ln_mlp.weight": "model-00080-of-00081.safetensors",
|
619 |
+
"transformer.h.78.mlp.dense_4h_to_h.weight": "model-00080-of-00081.safetensors",
|
620 |
+
"transformer.h.78.mlp.dense_h_to_4h.weight": "model-00079-of-00081.safetensors",
|
621 |
+
"transformer.h.78.self_attention.dense.weight": "model-00079-of-00081.safetensors",
|
622 |
+
"transformer.h.78.self_attention.query_key_value.weight": "model-00079-of-00081.safetensors",
|
623 |
+
"transformer.h.79.ln_attn.bias": "model-00081-of-00081.safetensors",
|
624 |
+
"transformer.h.79.ln_attn.weight": "model-00081-of-00081.safetensors",
|
625 |
+
"transformer.h.79.ln_mlp.bias": "model-00081-of-00081.safetensors",
|
626 |
+
"transformer.h.79.ln_mlp.weight": "model-00081-of-00081.safetensors",
|
627 |
+
"transformer.h.79.mlp.dense_4h_to_h.weight": "model-00081-of-00081.safetensors",
|
628 |
+
"transformer.h.79.mlp.dense_h_to_4h.weight": "model-00080-of-00081.safetensors",
|
629 |
+
"transformer.h.79.self_attention.dense.weight": "model-00080-of-00081.safetensors",
|
630 |
+
"transformer.h.79.self_attention.query_key_value.weight": "model-00080-of-00081.safetensors",
|
631 |
+
"transformer.h.8.ln_attn.bias": "model-00010-of-00081.safetensors",
|
632 |
+
"transformer.h.8.ln_attn.weight": "model-00010-of-00081.safetensors",
|
633 |
+
"transformer.h.8.ln_mlp.bias": "model-00010-of-00081.safetensors",
|
634 |
+
"transformer.h.8.ln_mlp.weight": "model-00010-of-00081.safetensors",
|
635 |
+
"transformer.h.8.mlp.dense_4h_to_h.weight": "model-00010-of-00081.safetensors",
|
636 |
+
"transformer.h.8.mlp.dense_h_to_4h.weight": "model-00009-of-00081.safetensors",
|
637 |
+
"transformer.h.8.self_attention.dense.weight": "model-00009-of-00081.safetensors",
|
638 |
+
"transformer.h.8.self_attention.query_key_value.weight": "model-00009-of-00081.safetensors",
|
639 |
+
"transformer.h.9.ln_attn.bias": "model-00011-of-00081.safetensors",
|
640 |
+
"transformer.h.9.ln_attn.weight": "model-00011-of-00081.safetensors",
|
641 |
+
"transformer.h.9.ln_mlp.bias": "model-00011-of-00081.safetensors",
|
642 |
+
"transformer.h.9.ln_mlp.weight": "model-00011-of-00081.safetensors",
|
643 |
+
"transformer.h.9.mlp.dense_4h_to_h.weight": "model-00011-of-00081.safetensors",
|
644 |
+
"transformer.h.9.mlp.dense_h_to_4h.weight": "model-00010-of-00081.safetensors",
|
645 |
+
"transformer.h.9.self_attention.dense.weight": "model-00010-of-00081.safetensors",
|
646 |
+
"transformer.h.9.self_attention.query_key_value.weight": "model-00010-of-00081.safetensors",
|
647 |
+
"transformer.ln_f.bias": "model-00081-of-00081.safetensors",
|
648 |
+
"transformer.ln_f.weight": "model-00081-of-00081.safetensors",
|
649 |
+
"transformer.word_embeddings.weight": "model-00001-of-00081.safetensors"
|
650 |
+
}
|
651 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
">>TITLE<<",
|
4 |
+
">>ABSTRACT<<",
|
5 |
+
">>INTRODUCTION<<",
|
6 |
+
">>SUMMARY<<",
|
7 |
+
">>COMMENT<<",
|
8 |
+
">>ANSWER<<",
|
9 |
+
">>QUESTION<<",
|
10 |
+
">>DOMAIN<<",
|
11 |
+
">>PREFIX<<",
|
12 |
+
">>SUFFIX<<",
|
13 |
+
">>MIDDLE<<"
|
14 |
+
],
|
15 |
+
"eos_token": "<|endoftext|>"
|
16 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"eos_token": "<|endoftext|>",
|
4 |
+
"model_max_length": 2048,
|
5 |
+
"name_or_path": "tiiuae/falcon-40b",
|
6 |
+
"special_tokens_map_file": null,
|
7 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
8 |
+
}
|