|
from functools import partial
|
|
import torch
|
|
import torch.nn as nn
|
|
from transformers import UperNetForSemanticSegmentation
|
|
|
|
|
|
class STFT:
|
|
def __init__(self, config):
|
|
self.n_fft = config.n_fft
|
|
self.hop_length = config.hop_length
|
|
self.window = torch.hann_window(window_length=self.n_fft, periodic=True)
|
|
self.dim_f = config.dim_f
|
|
|
|
def __call__(self, x):
|
|
window = self.window.to(x.device)
|
|
batch_dims = x.shape[:-2]
|
|
c, t = x.shape[-2:]
|
|
x = x.reshape([-1, t])
|
|
x = torch.stft(
|
|
x,
|
|
n_fft=self.n_fft,
|
|
hop_length=self.hop_length,
|
|
window=window,
|
|
center=True,
|
|
return_complex=True
|
|
)
|
|
x = torch.view_as_real(x)
|
|
x = x.permute([0, 3, 1, 2])
|
|
x = x.reshape([*batch_dims, c, 2, -1, x.shape[-1]]).reshape([*batch_dims, c * 2, -1, x.shape[-1]])
|
|
return x[..., :self.dim_f, :]
|
|
|
|
def inverse(self, x):
|
|
window = self.window.to(x.device)
|
|
batch_dims = x.shape[:-3]
|
|
c, f, t = x.shape[-3:]
|
|
n = self.n_fft // 2 + 1
|
|
f_pad = torch.zeros([*batch_dims, c, n - f, t]).to(x.device)
|
|
x = torch.cat([x, f_pad], -2)
|
|
x = x.reshape([*batch_dims, c // 2, 2, n, t]).reshape([-1, 2, n, t])
|
|
x = x.permute([0, 2, 3, 1])
|
|
x = x[..., 0] + x[..., 1] * 1.j
|
|
x = torch.istft(
|
|
x,
|
|
n_fft=self.n_fft,
|
|
hop_length=self.hop_length,
|
|
window=window,
|
|
center=True
|
|
)
|
|
x = x.reshape([*batch_dims, 2, -1])
|
|
return x
|
|
|
|
|
|
def get_norm(norm_type):
|
|
def norm(c, norm_type):
|
|
if norm_type == 'BatchNorm':
|
|
return nn.BatchNorm2d(c)
|
|
elif norm_type == 'InstanceNorm':
|
|
return nn.InstanceNorm2d(c, affine=True)
|
|
elif 'GroupNorm' in norm_type:
|
|
g = int(norm_type.replace('GroupNorm', ''))
|
|
return nn.GroupNorm(num_groups=g, num_channels=c)
|
|
else:
|
|
return nn.Identity()
|
|
|
|
return partial(norm, norm_type=norm_type)
|
|
|
|
|
|
def get_act(act_type):
|
|
if act_type == 'gelu':
|
|
return nn.GELU()
|
|
elif act_type == 'relu':
|
|
return nn.ReLU()
|
|
elif act_type[:3] == 'elu':
|
|
alpha = float(act_type.replace('elu', ''))
|
|
return nn.ELU(alpha)
|
|
else:
|
|
raise Exception
|
|
|
|
|
|
class Upscale(nn.Module):
|
|
def __init__(self, in_c, out_c, scale, norm, act):
|
|
super().__init__()
|
|
self.conv = nn.Sequential(
|
|
norm(in_c),
|
|
act,
|
|
nn.ConvTranspose2d(in_channels=in_c, out_channels=out_c, kernel_size=scale, stride=scale, bias=False)
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.conv(x)
|
|
|
|
|
|
class Downscale(nn.Module):
|
|
def __init__(self, in_c, out_c, scale, norm, act):
|
|
super().__init__()
|
|
self.conv = nn.Sequential(
|
|
norm(in_c),
|
|
act,
|
|
nn.Conv2d(in_channels=in_c, out_channels=out_c, kernel_size=scale, stride=scale, bias=False)
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.conv(x)
|
|
|
|
|
|
class TFC_TDF(nn.Module):
|
|
def __init__(self, in_c, c, l, f, bn, norm, act):
|
|
super().__init__()
|
|
|
|
self.blocks = nn.ModuleList()
|
|
for i in range(l):
|
|
block = nn.Module()
|
|
|
|
block.tfc1 = nn.Sequential(
|
|
norm(in_c),
|
|
act,
|
|
nn.Conv2d(in_c, c, 3, 1, 1, bias=False),
|
|
)
|
|
block.tdf = nn.Sequential(
|
|
norm(c),
|
|
act,
|
|
nn.Linear(f, f // bn, bias=False),
|
|
norm(c),
|
|
act,
|
|
nn.Linear(f // bn, f, bias=False),
|
|
)
|
|
block.tfc2 = nn.Sequential(
|
|
norm(c),
|
|
act,
|
|
nn.Conv2d(c, c, 3, 1, 1, bias=False),
|
|
)
|
|
block.shortcut = nn.Conv2d(in_c, c, 1, 1, 0, bias=False)
|
|
|
|
self.blocks.append(block)
|
|
in_c = c
|
|
|
|
def forward(self, x):
|
|
for block in self.blocks:
|
|
s = block.shortcut(x)
|
|
x = block.tfc1(x)
|
|
x = x + block.tdf(x)
|
|
x = block.tfc2(x)
|
|
x = x + s
|
|
return x
|
|
|
|
|
|
class Swin_UperNet_Model(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
|
|
act = get_act(act_type=config.model.act)
|
|
|
|
self.num_target_instruments = 1 if config.training.target_instrument else len(config.training.instruments)
|
|
self.num_subbands = config.model.num_subbands
|
|
|
|
dim_c = self.num_subbands * config.audio.num_channels * 2
|
|
c = config.model.num_channels
|
|
f = config.audio.dim_f // self.num_subbands
|
|
|
|
self.first_conv = nn.Conv2d(dim_c, c, 1, 1, 0, bias=False)
|
|
|
|
self.swin_upernet_model = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-large")
|
|
|
|
self.swin_upernet_model.auxiliary_head.classifier = nn.Conv2d(256, c, kernel_size=(1, 1), stride=(1, 1))
|
|
self.swin_upernet_model.decode_head.classifier = nn.Conv2d(512, c, kernel_size=(1, 1), stride=(1, 1))
|
|
self.swin_upernet_model.backbone.embeddings.patch_embeddings.projection = nn.Conv2d(c, 192, kernel_size=(4, 4), stride=(4, 4))
|
|
|
|
self.final_conv = nn.Sequential(
|
|
nn.Conv2d(c + dim_c, c, 1, 1, 0, bias=False),
|
|
act,
|
|
nn.Conv2d(c, self.num_target_instruments * dim_c, 1, 1, 0, bias=False)
|
|
)
|
|
|
|
self.stft = STFT(config.audio)
|
|
|
|
def cac2cws(self, x):
|
|
k = self.num_subbands
|
|
b, c, f, t = x.shape
|
|
x = x.reshape(b, c, k, f // k, t)
|
|
x = x.reshape(b, c * k, f // k, t)
|
|
return x
|
|
|
|
def cws2cac(self, x):
|
|
k = self.num_subbands
|
|
b, c, f, t = x.shape
|
|
x = x.reshape(b, c // k, k, f, t)
|
|
x = x.reshape(b, c // k, f * k, t)
|
|
return x
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.stft(x)
|
|
|
|
mix = x = self.cac2cws(x)
|
|
|
|
first_conv_out = x = self.first_conv(x)
|
|
|
|
x = x.transpose(-1, -2)
|
|
|
|
x = self.swin_upernet_model(x).logits
|
|
|
|
x = x.transpose(-1, -2)
|
|
|
|
x = x * first_conv_out
|
|
|
|
x = self.final_conv(torch.cat([mix, x], 1))
|
|
|
|
x = self.cws2cac(x)
|
|
|
|
if self.num_target_instruments > 1:
|
|
b, c, f, t = x.shape
|
|
x = x.reshape(b, self.num_target_instruments, -1, f, t)
|
|
|
|
x = self.stft.inverse(x)
|
|
return x
|
|
|
|
|
|
if __name__ == "__main__":
|
|
model = UperNetForSemanticSegmentation.from_pretrained("./results/", ignore_mismatched_sizes=True)
|
|
print(model)
|
|
print(model.auxiliary_head.classifier)
|
|
print(model.decode_head.classifier)
|
|
|
|
x = torch.zeros((2, 16, 512, 512), dtype=torch.float32)
|
|
res = model(x)
|
|
print(res.logits.shape)
|
|
model.save_pretrained('./results/') |