poiqazwsx's picture
Upload 57 files
51e2f90
from functools import partial
import torch
from torch import nn, einsum, Tensor
from torch.nn import Module, ModuleList
import torch.nn.functional as F
from models.bs_roformer.attend import Attend
from beartype.typing import Tuple, Optional, List, Callable
from beartype import beartype
from rotary_embedding_torch import RotaryEmbedding
from einops import rearrange, pack, unpack, reduce, repeat
from einops.layers.torch import Rearrange
from librosa import filters
# helper functions
def exists(val):
return val is not None
def default(v, d):
return v if exists(v) else d
def pack_one(t, pattern):
return pack([t], pattern)
def unpack_one(t, ps, pattern):
return unpack(t, ps, pattern)[0]
def pad_at_dim(t, pad, dim=-1, value=0.):
dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1)
zeros = ((0, 0) * dims_from_right)
return F.pad(t, (*zeros, *pad), value=value)
def l2norm(t):
return F.normalize(t, dim=-1, p=2)
# norm
class RMSNorm(Module):
def __init__(self, dim):
super().__init__()
self.scale = dim ** 0.5
self.gamma = nn.Parameter(torch.ones(dim))
def forward(self, x):
return F.normalize(x, dim=-1) * self.scale * self.gamma
# attention
class FeedForward(Module):
def __init__(
self,
dim,
mult=4,
dropout=0.
):
super().__init__()
dim_inner = int(dim * mult)
self.net = nn.Sequential(
RMSNorm(dim),
nn.Linear(dim, dim_inner),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(dim_inner, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(Module):
def __init__(
self,
dim,
heads=8,
dim_head=64,
dropout=0.,
rotary_embed=None,
flash=True
):
super().__init__()
self.heads = heads
self.scale = dim_head ** -0.5
dim_inner = heads * dim_head
self.rotary_embed = rotary_embed
self.attend = Attend(flash=flash, dropout=dropout)
self.norm = RMSNorm(dim)
self.to_qkv = nn.Linear(dim, dim_inner * 3, bias=False)
self.to_gates = nn.Linear(dim, heads)
self.to_out = nn.Sequential(
nn.Linear(dim_inner, dim, bias=False),
nn.Dropout(dropout)
)
def forward(self, x):
x = self.norm(x)
q, k, v = rearrange(self.to_qkv(x), 'b n (qkv h d) -> qkv b h n d', qkv=3, h=self.heads)
if exists(self.rotary_embed):
q = self.rotary_embed.rotate_queries_or_keys(q)
k = self.rotary_embed.rotate_queries_or_keys(k)
out = self.attend(q, k, v)
gates = self.to_gates(x)
out = out * rearrange(gates, 'b n h -> b h n 1').sigmoid()
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class LinearAttention(Module):
"""
this flavor of linear attention proposed in https://arxiv.org/abs/2106.09681 by El-Nouby et al.
"""
@beartype
def __init__(
self,
*,
dim,
dim_head=32,
heads=8,
scale=8,
flash=False,
dropout=0.
):
super().__init__()
dim_inner = dim_head * heads
self.norm = RMSNorm(dim)
self.to_qkv = nn.Sequential(
nn.Linear(dim, dim_inner * 3, bias=False),
Rearrange('b n (qkv h d) -> qkv b h d n', qkv=3, h=heads)
)
self.temperature = nn.Parameter(torch.ones(heads, 1, 1))
self.attend = Attend(
scale=scale,
dropout=dropout,
flash=flash
)
self.to_out = nn.Sequential(
Rearrange('b h d n -> b n (h d)'),
nn.Linear(dim_inner, dim, bias=False)
)
def forward(
self,
x
):
x = self.norm(x)
q, k, v = self.to_qkv(x)
q, k = map(l2norm, (q, k))
q = q * self.temperature.exp()
out = self.attend(q, k, v)
return self.to_out(out)
class Transformer(Module):
def __init__(
self,
*,
dim,
depth,
dim_head=64,
heads=8,
attn_dropout=0.,
ff_dropout=0.,
ff_mult=4,
norm_output=True,
rotary_embed=None,
flash_attn=True,
linear_attn=False
):
super().__init__()
self.layers = ModuleList([])
for _ in range(depth):
if linear_attn:
attn = LinearAttention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout, flash=flash_attn)
else:
attn = Attention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout,
rotary_embed=rotary_embed, flash=flash_attn)
self.layers.append(ModuleList([
attn,
FeedForward(dim=dim, mult=ff_mult, dropout=ff_dropout)
]))
self.norm = RMSNorm(dim) if norm_output else nn.Identity()
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return self.norm(x)
# bandsplit module
class BandSplit(Module):
@beartype
def __init__(
self,
dim,
dim_inputs: Tuple[int, ...]
):
super().__init__()
self.dim_inputs = dim_inputs
self.to_features = ModuleList([])
for dim_in in dim_inputs:
net = nn.Sequential(
RMSNorm(dim_in),
nn.Linear(dim_in, dim)
)
self.to_features.append(net)
def forward(self, x):
x = x.split(self.dim_inputs, dim=-1)
outs = []
for split_input, to_feature in zip(x, self.to_features):
split_output = to_feature(split_input)
outs.append(split_output)
return torch.stack(outs, dim=-2)
def MLP(
dim_in,
dim_out,
dim_hidden=None,
depth=1,
activation=nn.Tanh
):
dim_hidden = default(dim_hidden, dim_in)
net = []
dims = (dim_in, *((dim_hidden,) * depth), dim_out)
for ind, (layer_dim_in, layer_dim_out) in enumerate(zip(dims[:-1], dims[1:])):
is_last = ind == (len(dims) - 2)
net.append(nn.Linear(layer_dim_in, layer_dim_out))
if is_last:
continue
net.append(activation())
return nn.Sequential(*net)
class MaskEstimator(Module):
@beartype
def __init__(
self,
dim,
dim_inputs: Tuple[int, ...],
depth,
mlp_expansion_factor=4
):
super().__init__()
self.dim_inputs = dim_inputs
self.to_freqs = ModuleList([])
dim_hidden = dim * mlp_expansion_factor
for dim_in in dim_inputs:
net = []
mlp = nn.Sequential(
MLP(dim, dim_in * 2, dim_hidden=dim_hidden, depth=depth),
nn.GLU(dim=-1)
)
self.to_freqs.append(mlp)
def forward(self, x):
x = x.unbind(dim=-2)
outs = []
for band_features, mlp in zip(x, self.to_freqs):
freq_out = mlp(band_features)
outs.append(freq_out)
return torch.cat(outs, dim=-1)
# main class
class MelBandRoformer(Module):
@beartype
def __init__(
self,
dim,
*,
depth,
stereo=False,
num_stems=1,
time_transformer_depth=2,
freq_transformer_depth=2,
linear_transformer_depth=0,
num_bands=60,
dim_head=64,
heads=8,
attn_dropout=0.1,
ff_dropout=0.1,
flash_attn=True,
dim_freqs_in=1025,
sample_rate=44100, # needed for mel filter bank from librosa
stft_n_fft=2048,
stft_hop_length=512,
# 10ms at 44100Hz, from sections 4.1, 4.4 in the paper - @faroit recommends // 2 or // 4 for better reconstruction
stft_win_length=2048,
stft_normalized=False,
stft_window_fn: Optional[Callable] = None,
mask_estimator_depth=1,
multi_stft_resolution_loss_weight=1.,
multi_stft_resolutions_window_sizes: Tuple[int, ...] = (4096, 2048, 1024, 512, 256),
multi_stft_hop_size=147,
multi_stft_normalized=False,
multi_stft_window_fn: Callable = torch.hann_window,
match_input_audio_length=False, # if True, pad output tensor to match length of input tensor
):
super().__init__()
self.stereo = stereo
self.audio_channels = 2 if stereo else 1
self.num_stems = num_stems
self.layers = ModuleList([])
transformer_kwargs = dict(
dim=dim,
heads=heads,
dim_head=dim_head,
attn_dropout=attn_dropout,
ff_dropout=ff_dropout,
flash_attn=flash_attn
)
time_rotary_embed = RotaryEmbedding(dim=dim_head)
freq_rotary_embed = RotaryEmbedding(dim=dim_head)
for _ in range(depth):
tran_modules = []
if linear_transformer_depth > 0:
tran_modules.append(Transformer(depth=linear_transformer_depth, linear_attn=True, **transformer_kwargs))
tran_modules.append(
Transformer(depth=time_transformer_depth, rotary_embed=time_rotary_embed, **transformer_kwargs)
)
tran_modules.append(
Transformer(depth=freq_transformer_depth, rotary_embed=freq_rotary_embed, **transformer_kwargs)
)
self.layers.append(nn.ModuleList(tran_modules))
self.stft_window_fn = partial(default(stft_window_fn, torch.hann_window), stft_win_length)
self.stft_kwargs = dict(
n_fft=stft_n_fft,
hop_length=stft_hop_length,
win_length=stft_win_length,
normalized=stft_normalized
)
freqs = torch.stft(torch.randn(1, 4096), **self.stft_kwargs, return_complex=True).shape[1]
# create mel filter bank
# with librosa.filters.mel as in section 2 of paper
mel_filter_bank_numpy = filters.mel(sr=sample_rate, n_fft=stft_n_fft, n_mels=num_bands)
mel_filter_bank = torch.from_numpy(mel_filter_bank_numpy)
# for some reason, it doesn't include the first freq? just force a value for now
mel_filter_bank[0][0] = 1.
# In some systems/envs we get 0.0 instead of ~1.9e-18 in the last position,
# so let's force a positive value
mel_filter_bank[-1, -1] = 1.
# binary as in paper (then estimated masks are averaged for overlapping regions)
freqs_per_band = mel_filter_bank > 0
assert freqs_per_band.any(dim=0).all(), 'all frequencies need to be covered by all bands for now'
repeated_freq_indices = repeat(torch.arange(freqs), 'f -> b f', b=num_bands)
freq_indices = repeated_freq_indices[freqs_per_band]
if stereo:
freq_indices = repeat(freq_indices, 'f -> f s', s=2)
freq_indices = freq_indices * 2 + torch.arange(2)
freq_indices = rearrange(freq_indices, 'f s -> (f s)')
self.register_buffer('freq_indices', freq_indices, persistent=False)
self.register_buffer('freqs_per_band', freqs_per_band, persistent=False)
num_freqs_per_band = reduce(freqs_per_band, 'b f -> b', 'sum')
num_bands_per_freq = reduce(freqs_per_band, 'b f -> f', 'sum')
self.register_buffer('num_freqs_per_band', num_freqs_per_band, persistent=False)
self.register_buffer('num_bands_per_freq', num_bands_per_freq, persistent=False)
# band split and mask estimator
freqs_per_bands_with_complex = tuple(2 * f * self.audio_channels for f in num_freqs_per_band.tolist())
self.band_split = BandSplit(
dim=dim,
dim_inputs=freqs_per_bands_with_complex
)
self.mask_estimators = nn.ModuleList([])
for _ in range(num_stems):
mask_estimator = MaskEstimator(
dim=dim,
dim_inputs=freqs_per_bands_with_complex,
depth=mask_estimator_depth
)
self.mask_estimators.append(mask_estimator)
# for the multi-resolution stft loss
self.multi_stft_resolution_loss_weight = multi_stft_resolution_loss_weight
self.multi_stft_resolutions_window_sizes = multi_stft_resolutions_window_sizes
self.multi_stft_n_fft = stft_n_fft
self.multi_stft_window_fn = multi_stft_window_fn
self.multi_stft_kwargs = dict(
hop_length=multi_stft_hop_size,
normalized=multi_stft_normalized
)
self.match_input_audio_length = match_input_audio_length
def forward(
self,
raw_audio,
target=None,
return_loss_breakdown=False
):
"""
einops
b - batch
f - freq
t - time
s - audio channel (1 for mono, 2 for stereo)
n - number of 'stems'
c - complex (2)
d - feature dimension
"""
device = raw_audio.device
if raw_audio.ndim == 2:
raw_audio = rearrange(raw_audio, 'b t -> b 1 t')
batch, channels, raw_audio_length = raw_audio.shape
istft_length = raw_audio_length if self.match_input_audio_length else None
assert (not self.stereo and channels == 1) or (
self.stereo and channels == 2), 'stereo needs to be set to True if passing in audio signal that is stereo (channel dimension of 2). also need to be False if mono (channel dimension of 1)'
# to stft
raw_audio, batch_audio_channel_packed_shape = pack_one(raw_audio, '* t')
stft_window = self.stft_window_fn(device=device)
stft_repr = torch.stft(raw_audio, **self.stft_kwargs, window=stft_window, return_complex=True)
stft_repr = torch.view_as_real(stft_repr)
stft_repr = unpack_one(stft_repr, batch_audio_channel_packed_shape, '* f t c')
stft_repr = rearrange(stft_repr,
'b s f t c -> b (f s) t c') # merge stereo / mono into the frequency, with frequency leading dimension, for band splitting
# index out all frequencies for all frequency ranges across bands ascending in one go
batch_arange = torch.arange(batch, device=device)[..., None]
# account for stereo
x = stft_repr[batch_arange, self.freq_indices]
# fold the complex (real and imag) into the frequencies dimension
x = rearrange(x, 'b f t c -> b t (f c)')
x = self.band_split(x)
# axial / hierarchical attention
for transformer_block in self.layers:
if len(transformer_block) == 3:
linear_transformer, time_transformer, freq_transformer = transformer_block
x, ft_ps = pack([x], 'b * d')
x = linear_transformer(x)
x, = unpack(x, ft_ps, 'b * d')
else:
time_transformer, freq_transformer = transformer_block
x = rearrange(x, 'b t f d -> b f t d')
x, ps = pack([x], '* t d')
x = time_transformer(x)
x, = unpack(x, ps, '* t d')
x = rearrange(x, 'b f t d -> b t f d')
x, ps = pack([x], '* f d')
x = freq_transformer(x)
x, = unpack(x, ps, '* f d')
num_stems = len(self.mask_estimators)
masks = torch.stack([fn(x) for fn in self.mask_estimators], dim=1)
masks = rearrange(masks, 'b n t (f c) -> b n f t c', c=2)
# modulate frequency representation
stft_repr = rearrange(stft_repr, 'b f t c -> b 1 f t c')
# complex number multiplication
stft_repr = torch.view_as_complex(stft_repr)
masks = torch.view_as_complex(masks)
masks = masks.type(stft_repr.dtype)
# need to average the estimated mask for the overlapped frequencies
scatter_indices = repeat(self.freq_indices, 'f -> b n f t', b=batch, n=num_stems, t=stft_repr.shape[-1])
stft_repr_expanded_stems = repeat(stft_repr, 'b 1 ... -> b n ...', n=num_stems)
masks_summed = torch.zeros_like(stft_repr_expanded_stems).scatter_add_(2, scatter_indices, masks)
denom = repeat(self.num_bands_per_freq, 'f -> (f r) 1', r=channels)
masks_averaged = masks_summed / denom.clamp(min=1e-8)
# modulate stft repr with estimated mask
stft_repr = stft_repr * masks_averaged
# istft
stft_repr = rearrange(stft_repr, 'b n (f s) t -> (b n s) f t', s=self.audio_channels)
recon_audio = torch.istft(stft_repr, **self.stft_kwargs, window=stft_window, return_complex=False,
length=istft_length)
recon_audio = rearrange(recon_audio, '(b n s) t -> b n s t', b=batch, s=self.audio_channels, n=num_stems)
if num_stems == 1:
recon_audio = rearrange(recon_audio, 'b 1 s t -> b s t')
# if a target is passed in, calculate loss for learning
if not exists(target):
return recon_audio
if self.num_stems > 1:
assert target.ndim == 4 and target.shape[1] == self.num_stems
if target.ndim == 2:
target = rearrange(target, '... t -> ... 1 t')
target = target[..., :recon_audio.shape[-1]] # protect against lost length on istft
loss = F.l1_loss(recon_audio, target)
multi_stft_resolution_loss = 0.
for window_size in self.multi_stft_resolutions_window_sizes:
res_stft_kwargs = dict(
n_fft=max(window_size, self.multi_stft_n_fft), # not sure what n_fft is across multi resolution stft
win_length=window_size,
return_complex=True,
window=self.multi_stft_window_fn(window_size, device=device),
**self.multi_stft_kwargs,
)
recon_Y = torch.stft(rearrange(recon_audio, '... s t -> (... s) t'), **res_stft_kwargs)
target_Y = torch.stft(rearrange(target, '... s t -> (... s) t'), **res_stft_kwargs)
multi_stft_resolution_loss = multi_stft_resolution_loss + F.l1_loss(recon_Y, target_Y)
weighted_multi_resolution_loss = multi_stft_resolution_loss * self.multi_stft_resolution_loss_weight
total_loss = loss + weighted_multi_resolution_loss
if not return_loss_breakdown:
return total_loss
return total_loss, (loss, multi_stft_resolution_loss)