Spaces:
Running
Running
poemsforaphrodite
commited on
Commit
•
a9c2ced
1
Parent(s):
67a6275
Update app.py
Browse files
app.py
CHANGED
@@ -241,7 +241,7 @@ def calculate_relevance_score(page_content, query, co):
|
|
241 |
def normalize_url(url):
|
242 |
return url.rstrip('/').lower()
|
243 |
|
244 |
-
def analyze_competitors(row, co,
|
245 |
query = row['query']
|
246 |
our_url = normalize_url(row['page'])
|
247 |
|
@@ -258,8 +258,12 @@ def analyze_competitors(row, co, custom_url=None, country_code=None):
|
|
258 |
'is_our_url': competitor_url == our_url
|
259 |
})
|
260 |
|
261 |
-
|
262 |
-
|
|
|
|
|
|
|
|
|
263 |
|
264 |
if not any(r['is_our_url'] for r in results):
|
265 |
results.append({
|
@@ -519,7 +523,7 @@ def show_model_type_selector():
|
|
519 |
key='model_type_selector'
|
520 |
)
|
521 |
|
522 |
-
def calculate_single_relevancy(row):
|
523 |
page_content = fetch_content(row['page'], row['query'])
|
524 |
query = row['query']
|
525 |
score = calculate_relevance_score(page_content, query, co)
|
@@ -632,7 +636,7 @@ def show_tabular_data(df, co, country_code):
|
|
632 |
with st.spinner('Calculating relevancy scores...'):
|
633 |
for index in selected_indices:
|
634 |
if pd.isna(df.iloc[index]['relevancy_score']) or df.iloc[index]['relevancy_score'] == 0:
|
635 |
-
df.iloc[index, df.columns.get_loc('relevancy_score')] = calculate_single_relevancy(df.iloc[index])
|
636 |
st.success(f"Calculated relevancy scores for {len(selected_indices)} selected rows.")
|
637 |
st.experimental_rerun()
|
638 |
|
@@ -687,6 +691,9 @@ def show_tabular_data(df, co, country_code):
|
|
687 |
our_url_mask = results_df['URL'].str.contains('Our URL')
|
688 |
results_df.loc[our_url_mask, 'Position'] = row.position
|
689 |
|
|
|
|
|
|
|
690 |
# Create a custom style function to highlight only our URL's row
|
691 |
def highlight_our_url(row):
|
692 |
if 'Our URL' in row['URL']:
|
|
|
241 |
def normalize_url(url):
|
242 |
return url.rstrip('/').lower()
|
243 |
|
244 |
+
def analyze_competitors(row, co, country_code):
|
245 |
query = row['query']
|
246 |
our_url = normalize_url(row['page'])
|
247 |
|
|
|
258 |
'is_our_url': competitor_url == our_url
|
259 |
})
|
260 |
|
261 |
+
# Use the existing relevancy score if available, otherwise calculate it
|
262 |
+
if pd.notna(row['relevancy_score']) and row['relevancy_score'] != 0:
|
263 |
+
our_score = row['relevancy_score']
|
264 |
+
else:
|
265 |
+
our_content = fetch_content(our_url, query)
|
266 |
+
our_score = calculate_relevance_score(our_content, query, co)
|
267 |
|
268 |
if not any(r['is_our_url'] for r in results):
|
269 |
results.append({
|
|
|
523 |
key='model_type_selector'
|
524 |
)
|
525 |
|
526 |
+
def calculate_single_relevancy(row, co):
|
527 |
page_content = fetch_content(row['page'], row['query'])
|
528 |
query = row['query']
|
529 |
score = calculate_relevance_score(page_content, query, co)
|
|
|
636 |
with st.spinner('Calculating relevancy scores...'):
|
637 |
for index in selected_indices:
|
638 |
if pd.isna(df.iloc[index]['relevancy_score']) or df.iloc[index]['relevancy_score'] == 0:
|
639 |
+
df.iloc[index, df.columns.get_loc('relevancy_score')] = calculate_single_relevancy(df.iloc[index], co)
|
640 |
st.success(f"Calculated relevancy scores for {len(selected_indices)} selected rows.")
|
641 |
st.experimental_rerun()
|
642 |
|
|
|
691 |
our_url_mask = results_df['URL'].str.contains('Our URL')
|
692 |
results_df.loc[our_url_mask, 'Position'] = row.position
|
693 |
|
694 |
+
# Ensure our URL's score matches the main table
|
695 |
+
results_df.loc[our_url_mask, 'Score'] = row.relevancy_score
|
696 |
+
|
697 |
# Create a custom style function to highlight only our URL's row
|
698 |
def highlight_our_url(row):
|
699 |
if 'Our URL' in row['URL']:
|